
February 2005

version 6.7

 Debugging Memory
Problems

using
TotalView

Copyright © 1999–2005 by Etnus LLC. All rights reserved.
Copyright © 1998–1999 by Etnus, Inc.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus LLC. (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in this man-
ual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus assumes no responsi-
bility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at http://www.etnus.com/Products/TotalView/developers.

All other brand names are the trademarks of their respective holders.

Debugging Memory Problems Using TotalView: version 6.7 iii

Contents

1 Debugging Memory Problems
Checking for Problems ... 2
Programs and Memory ... 2
Behind the Scenes .. 5
Your Program’s Data ... 7

The Data Section .. 8
The Stack .. 8
The Heap .. 12

Finding Allocation Problems ... 12
Finding Deallocation Problems ... 13
realloc() Problems ... 13
Finding Memory Leaks .. 13

Using the Memory Debugger .. 15
Memory Debugger Overview ... 15
Enabling, Stopping, and Starting .. 17

Finding free() and realloc() Problems .. 17
Event and Error Notification ... 18
Types of Problems .. 19

Freeing Unallocated Space ... 19
Freeing Memory That Is Already Freed ... 20
Tracking realloc() Problems ... 21
Freeing the Wrong Address ... 21

Block Properties and Event Notification .. 21
Finding Memory Leaks .. 24

Using Watch Points ... 26
Fixing Dangling Pointer Problems ... 26

Dangling Pointers .. 27
Examining Memory ... 28

Filtering ... 31
Block Painting ... 31
Hoarding ... 32

Example 1: Finding a Multithreading Problem .. 33
Example 2: Finding Dangling Pointer References ... 33

Contents

iv Debugging Memory Problems Using TotalView: version 6.7

2 Using the Memory Debugger Window
About the Memory Debugger ... 35
Common Operations .. 37

Rows and Columns ... 37
Filtering ... 38
Saving Views ... 41

Configuration Page ... 44
Leak Detection Page ... 52
Heap Status Page ... 56
Memory Usage Page ... 60

3 Using the dheap Command
dheap Example .. 63
dheap.. 65

Notification When free Problems Occur ... 74
Showing Backtrace Information: dheap –backtrace: .. 75
Memory Reuse: dheap –hoard ... 75
Writing Heap Information: dheap –export .. 77
Filtering Heap Information: dheap –filter ... 77
Checking for Dangling Pointers: dheap –is_dangling: .. 78
Detecting Leaks: dheap –leaks ... 79
Block Painting: dheap –paint .. 79
Deallocation Notification: dheap –tag_alloc .. 80

TV_HEAP_ARGS ... 82

4 Creating Programs for Memory Debugging
Linking Your Application With the Agent .. 83
Attaching to Programs .. 85
Using the Memory Debugger .. 86

MPICH ... 86
IBM PE ... 86
SGI MPI ... 87
RMS MPI .. 88

Installing tvheap_mr.a on AIX .. 88
LIBPATH and Linking .. 89

Using the TVHEAP_ARGS Variable .. 90

Debugging Memory Problems Using TotalView: version 6.7 1

Debugging Memory
Problems 1

Any time you read about debugging, you read that 60 or 70% of all
programming errors are memory-related. So, while these numbers
may be wrong, let’s assume that they are right. Now for the bad news:
the reason that memory errors occur is that the programmer made
an error. All memory errors are preventable.

Why are there so many memory errors? There are many answers. For
example, programs are complicated. And, programmers make
assumptions when they shouldn’t. Is a library function allocating its
own memory or should the program be allocating it? Once it is allo-
cated, does your program manage the memory or does the library?
Something creates a pointer to something and the memory is freed
without any knowledge that something else is pointing to it. Or, and
these are the most prevalent reason, there’s a wide separation
between lines of code or the time when old code and new code was
written. And, of course, there’s always insufficient and bad docu-
mentation.

Some problems can be irrelevant. If you forget to free the memory
allocated for a small array, it doesn’t mean much. And, it may even
be more efficient not to free the memory. The operating system will
free it for you when the program ends, so there are times when you
don’t want to bother. On the other hand, if you continually allocate
memory without freeing it, your program may eventually crash
because it can’t get more memory.

Checking for Problems

2 Chapter 1: Debugging Memory Problems

Checking for Problems _________________
The TotalView Memory Debugger can help you locate many of your
program’s memory problems. For example, you can:

Stop execution when free(), realloc(), and other heap API problems oc-
cur.
If your program tries to free memory that it can’t or shouldn’t free, the
Memory Debugger can stop execution. This lets you identify the state-
ment that caused the problem. For more information, see “Finding free()
and realloc() Problems” on page 17.
List leaks.
The Memory Debugger can display your program’s leaks. (Leaks are mem-
ory blocks that are allocated, but which are no longer referenced.)
When your program allocates a memory block, the Memory Debugger cre-
ates a backtrace.

A backtrace is a list of stack frames. The Memory Debugger creates and stores the list
of stack frames that are associated with many different kinds of memory events.

When it makes a list of your leaks, it includes this backtrace in the list. This
lets you see the place where your program allocated the memory block.
For more information, see “Finding Memory Leaks” on page 24.
Paint allocated and deallocated blocks.
When your program’s memory manager allocates or deallocates memory,
the Memory Debugger can write a bit pattern into it. Writing this bit pat-
tern is called painting.
When you see this bit pattern in a Variable or Expression List Window, you
know that you are using memory before your program initializes it or after
your program deallocates it. Depending upon the architecture, you might
even be able to force an exception when your program accesses this
memory. For more information, see “Block Painting” on page 31.
Identify dangling pointers.
A dangling pointer is a pointer that points into deallocated memory. If the
pointer being displayed in a Variable Window is dangling, TotalView adds
information to the data element so that you know about the problem. For
more information, see “Dangling Pointers” on page 27.
Hold onto deallocated memory.
When trying to identify memory problems, holding onto memory after
your program releases it can sometimes help locate problems by forcing
a memory error to occur. Holding onto freed memory is called hoarding.
If you are also painting memory, you can know when your program is try-
ing to access deallocated memory. For more information, see “Hoarding”
on page 32.

Programs and Memory _________________
When you run a program, your operating system loads the program into
memory and defines an address space in which the program can operate.

Programs and Memory

Debugging Memory Problems Using TotalView: version 6.7 3

1. M
em

ory Problem
s

For example, if your program is executing in a 32-bit computer, the address
space is approximately 4 gigabytes.

Since the discussion in this chapter is pretty general, what you will be reading is almost
true for many computer architectures, somewhat wrong for all, and perhaps completely
wrong for the computer upon which you are debugging memory problems. For accurate
information, you’ll need to read information provided by your vendor.

The operating system does not actually allocate the memory in this
address space. Instead, operating systems memory map this space, which
means that it maps the relationship between the theoretical address space
your program could use and what it actually uses. Typically, operating sys-
tems divide memory into pages. When a program begins executing, the
operating system creates a map that correlates the executing program with
the pages that contain the program’s information. The following figure
shows regions of a program. The arrows point to the memory pages that
contain the program.

In this figure, the stack contains three stack frames, each mapped to its
own page. Similarly, the heap shows two allocations, each of which is

Figure 1: Mapping Program
Pages

Program

Heap

Stack

library
library
library

available

available

Programs and Memory

4 Chapter 1: Debugging Memory Problems

mapped to its own page. (This isn’t what really happens since a page can
have many stack frames and many heap allocations. But doing this makes a
nice picture.)

The program did not emerge fully-formed into this state. It had to be com-
piled, linked, and loaded. The following figure shows a program whose
source code resides in four files. Running these files through a compiler
creates object files. A linker then merges these object files and any external
libraries needed into a load file. This load file is the executable program
that is stored on your computer’s file system.

When the linker creates the load file, it combines the information con-
tained in each of the object files into one unit. Combining them is relatively
straightforward. The load file shown at the bottom of this figure simplifies

Figure 2: Compiling Programs

source
file

source
file

source
file

object
file

object
file

object
file

object
file

library
file

library
file

source
file

compile

link

data section

symbol table
section

machine code
(text) section

header section

Load File

Behind the Scenes

Debugging Memory Problems Using TotalView: version 6.7 5

1. M
em

ory Problem
s

this file’s contents, since it always contains more sections and more infor-
mation.

The contents of these sections are as follows:

Data section—contains static variables and variables initialized outside
of a function. The following is a small sample program:
int my_var1 = 10;
void main ()
{

static int my_var2 = 1;
int my_var3;
my_var3 = my_var1 + my_var2;
printf(“here’s what I’ve got: %i\n”, my_var3);

}
The data section contains the my_var1 and my_var2 variables. The mem-
ory for the my_var3 variable is dynamically and automatically allocated
within the stack by your program’s runtime system.
Symbol table section—contains addresses (usually offsets) to the lo-
cations of routines and variables.
Machine code section—contains an intermediate binary representation
of your program. (It is intermediate because addresses are not yet resolved.)
Header section—contains information about the size and location of
information in all other sections of the object file.

When the linker creates the load file from the object and library files, it
interweaves these sections into one file. The linking operation creates
something that your operating system can load into memory. Figure 3 on
page 6 shows this process.

The Memory Debugger can provide information about these sections and
the amount of memory your program is using. To obtain this information,
select the Tools > Memory Debugging command and then select the
Memory Usage tab and select Process View. (See Figure 4 on page 7.)

In this listing, the data and symbol table sections of the load file are com-
bined into the Data column.

For information on this page, see “Memory Usage Page” on page 60.

Behind the Scenes _____________________
The TotalView Memory Debugger intercepts calls made by your program to
heap library functions that allocate and deallocate memory using the
malloc() and free() functions and the new and delete operators. It also
tracks related functions such, as calloc() and realloc(). The Memory Debug-
ger uses a technique called interposition, in which an agent intercepts calls
to functions.

You can use the Memory Debugger with any allocation and deallocation
library that uses such functions as malloc() and free(). For example, the
C++ new operator is almost always built on top of the malloc() function. If
it is, the Memory Debugger can track it. Similarly, some Fortran implemen-

Behind the Scenes

6 Chapter 1: Debugging Memory Problems

tations use the malloc() and free() functions to manage memory. In these
cases, the Memory Debugger can track Fortran memory use.

You can interpose the agent in two ways:

You can tell TotalView to preload the agent. Preloading means that the loader
loads an object before the object listed in the application’s loader table.
When a routine references a symbol in another routine, the linker
searches for the first definition of that symbol. Because the agent’s rou-
tine is the first object in the table, its routine is invoked instead of the rou-
tine in the program’s heap manager.
On Linux, HP Tru64 Alpha, Sun, and SGI, TotalView sets an environment
variable that contains the pathname of the agent’s shared library in your
local TotalView installation. For more information, see “Attaching to Pro-
grams” on page 85.
If TotalView cannot preload the agent, you must explicitly link it into your
program. For details, see “Creating Programs for Memory Debugging” on
page 83.

Figure 3: Linking a Program

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Data
Section

Symbol Table
Section

Machine Code
(text) Section

Header
Section

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.7 7

1. M
em

ory Problem
s

If your program attaches to an already running program, you must explic-
itly link this other program with the agent.

The agent uses operations defined in the dynamic linker’s API to find the
original definition of the routine. After the agent intercepts a call, it calls
the original function. This means that you can use the Memory Debugger
with most memory allocators. Figure 5 on page 8 shows how the agent
interacts with your program and the heap library.

Because TotalView uses interposition, memory debugging can be consid-
ered non-invasive. That is, TotalView doesn’t rewrite or augment your pro-
gram’s code, and you don’t have to do anything in your program. Adding
the agent does not change your program’s behavior.

Your Program’s Data ___________________
Your program’s variables resides in the following places:

Data section
Stack
Heap

Figure 4: Memory Usage Page: Process View

Your Program’s Data

8 Chapter 1: Debugging Memory Problems

The Data Section Memory in the data section is permanently allocated. Your program uses
this section for storing static and global variables. The size of this section is
fixed when the operating system loads the program and the variables
within it exist for the entire time that your program is executing. Errors can
occur if your program tries to manage this section’s memory. For example,
you cannot free memory allocated to variables in the data section. In gen-
eral, errors are usually related to the programmer not understanding that
the program can’t manage data section memory.

The Stack Memory in the stack section is dynamically managed by your program’s
memory manager. Consequently, your program cannot allocate memory
within the stack or deallocate memory within it.

“Deallocates means that your program is no longer using this memory. The next time
your program calls a routine, the new stack frame overwrites the memory previously
used by other routines. In almost all cases, deallocated memory, whether on the stack or
the heap, just hangs around in its preallocation state until it gets reassigned.

The stack differs from the data section in that the space is dynamically
managed. What’s in it one minute might not be there a moment later. Your
program’s runtime environment allocates memory for stack frames as your
program calls routines and deallocates these frames when execution exits
from it.

At a minimum, a stack frame contains lots of control information, data
storage, and space for passed-in arguments (parameters) and the returned
value. Figure 6 on page 9 shows three ways in which a compiler can arrange
stack frame information:

In this figure, the left and center stack frames have different positions for
the parameters and returned value. The stack frame on the right is a little

Figure 5: Interposition

ptr = malloc(...);

program

agent

heap

malloc

place information
in agent tables

returned
value

interceptor

recorder

interceptor and recorder

TotalView obtains
backtrace

manager

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.7 9

1. M
em

ory Problem
s

more complicated. In this version, the parameters are located within a
stack memory area that doesn’t belong to either stack frame.

If a stack frame contains local (sometimes called automatic) variables,
where is this memory placed? If the routine has blocks in which memory is
allocated, where on the stack is this memory for these additional variables
placed? Although there are many variations, the following figure shows two
of the more common ways to allocate memory:

The blocks on the left shows a data block allocated within a stack frame on
a system that ignores your routine’s block structure. The compiler figures
how much memory is needed, and then allocates enough memory for all of
your routine’s automatic variables. These kinds of systems are optimized
to minimize the time necessary to allocate memory. Other systems dynami-
cally allocate the memory required for a block as the block is entered, and

Figure 6: Placing Parameters

Control
information

Returned
value

Parameters

Local data

Returned
value

Control
information

Local data

Parameters

Returned
value

Control
information

Local data

Parameters

Returned
value

Control
information

Local data

Parameters

Control
information

Local data

Returned
value

Returned
value

Control
information

Local data

Parameters

Figure 7: Local Data in a Stack
Frame

Returned
value

State
information

Local data

Parameters

Parameters

State
information

Local data

Returned
value

Block data

Your Program’s Data

10 Chapter 1: Debugging Memory Problems

then deallocate it as execution leaves the block. (The blocks on the right
show this.) These kinds of systems are optimized to minimize a routine’s
size.

As your program executes routines, routines call other routines, placing
additional routines on the stack. The following figure shows four stack
frames. The shaded areas represents local data.

What happens when a pointer to memory in a stack frame is passed to
lower frames? This situation is shown in the following figure:

The arrows on the left represent the pointer passed down the stack. The
lines and arrows on the right indicate the place to which the pointer is
pointing. A pointer to memory in frame 1 is passed to frame 2, which
passes the pointer to frame 3, and then to frame 4. In all frames, the
pointer points to a memory location in frame 1. Stated in another way, the
pointers in frames 2, 3, and 4 point to memory in another stack frame. This
is considered the most efficient way for your program to pass data from
one routine to another. Using the pointer, you can both access and alter
the information that the pointer is pointing to.

Sometimes you read that data can be passed by-value (which means copying it) or by-
reference (which means passing a pointer). This really isn’t true. Something is always
copied. “Pass-by-reference” means that instead of copying the data, the program copies
a pointer to the data.

Figure 8: Four Stack Frames

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Figure 9: Passing Pointers

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.7 11

1. M
em

ory Problem
s

Because the program’s run-time system owns stack memory, you cannot
free it. Instead, it gets freed when a frame is popped from the stack.

One of the reasons for memory problems is that you it may sometimes be
unclear who owns a variable’s memory. For example, in the following figure,
the routine in frame 1 has allocated memory in the heap, and passes a
pointer to that memory to other stack frames:

If the routine executing in frame 4 frees this memory, all pointers to that
memory are dangling; that is, they point to deallocated memory. If the pro-
gram’s memory manager reallocates this heap memory block, the data
accessible by all the pointers is both invalid and wrong. Unfortunately, if
the memory manager doesn’t immediately reuse the block, the data
accessed through the pointers is still correct. This is unfortunate, because
there’s no guarantee that the data is correct and there won’t be any pat-
tern to when the block becomes invalid. This means that when problems
occur, they are intermittent, which makes them even harder to locate.

Another common problem is when you allocate memory and assign its
location to an automatic variable. This is shown in Figure 11 on page 11.

If frame 4 returns control to frame 3 without deallocating the heap memory
it created, this memory is no longer accessible. That is, your program loses
the ability to use this memory block. It has leaked this memory block.

Figure 10: Allocating a Memory
Block Heap memory

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Figure 11: Allocating a Block
form a Stack Frame

Heap memory
Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Your Program’s Data

12 Chapter 1: Debugging Memory Problems

If you have trouble remembering the difference between a leak and a dangling pointer,
this may help. Before either problems occurs, memory is created on the heap and the
address of this memory block is assigned to a pointer. A leak occurs when the pointer
gets deleted, leaving a block with no reference. In contrast, a dangling pointer occurs
when the memory block is deallocated, leaving a pointer that points to deallocated mem-
ory. Both are shown in the following figure.

The Memory Debugger Leak Detection Page shows all of your program’s
leaks. For information on detecting leaks, see “Finding Memory Leaks” on
page 24.

The Heap The heap is an area of memory that your program uses when it wants to
dynamically allocate space for data. While using the heap gives you a con-
siderable amount of flexibility, you must manage this resource. You allocate
and deallocate this space. In contrast, you do not allocate or deallocate
memory in other areas.

Because allocation and deallocation are intimately linked with your pro-
gram’s algorithms and, in some cases, the way you use this memory is
implicit rather than explicit, problems associated with the heap are the
hardest to find.

Finding Allocation Problems
Memory allocation problems are seldom due to allocation requests. Instead,
they occur because your program either is using too much memory or is
leaking it. Because an operating system’s virtual memory space is large,
allocation requests usually succeed. Nevertheless, you should always
check the value returned from allocation requests such as malloc(), calloc(),
and realloc(). Similarly, you should always check whether the C++ new
operator returns a null pointer. (Newer C++ compilers throw a bad_alloc
exception.) If your compiler supports the new_handler operator, you can
throw your own exception.

You can tell the Memory Debugger to stop execution when your program
encounter memory allocation problems. However, since these problems
are rare, you might never come across one.

Figure 12: Leaks and Dangling
Pointers ptr

ptr ptr

leaked memory dangling pointer

normal allocation

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.7 13

1. M
em

ory Problem
s

Finding Deallocation Problems
The Memory Debugger can let you know when your program encounters a
problem deallocating memory. Some of the problems it can identify are:

free not allocated: An application calls the free() function using an ad-
dress that is not in a block allocated in the heap.
realloc not allocated: An application calls the realloc() function using
an address that is not in a block allocated in the heap.
Address not at start of block: A free() or realloc() function receives a
heap address that is not at the start of a previously allocated block.

If a library routine use the memory manager and a problem occurs, the
Memory Debugger still locates the problem. For example, the strdup()
string library functions call the malloc() function to create memory for a
duplicated string. Since the strdup() function is calling the malloc() func-
tion, the Memory Debugger can track this memory.

You can tell the Memory Debugger to stop execution just before your pro-
gram misuses a heap API operation. This lets you see what the problem is
before it actually occurs. (For more information, see “Behind the Scenes” on
page 5.)

Because execution stops before your program’s heap manager deallocates memory, you
can use the Thread > Set PC command to set the PC to a line after the free request.
This means that you can continue debugging past a problem that might cause your pro-
gram to crash.

realloc() Problems
The realloc() function can create unanticipated problems. This function can
either extend a current memory block, or create a new block and free the
old. Although you can check to see which action occurred, you need to
code defensively so that problems do not occur. Specifically, you must
change every pointer pointing to the memory block to point to the new
one. Also, if the pointer doesn’t point to the beginning of the block, you
need to take some corrective action.

In the following figure, two pointers are pointing to a block. After the
realloc() function executes, ptr1 points to the new block. However, ptr2 still
points to the original block, a block that was deallocated and returned to
the heap manager. (See Figure 13 on page 14.)

Finding Memory Leaks
Technically, there’s no such thing as a memory leak. Memory doesn’t leak,
can’t leak. With that said, a memory leak is a block of memory that a pro-
gram allocates that is no longer referenced. For example, when your pro-
gram allocates memory, it assigns the block’s location to a pointer. A leak
can occur if one of the following occurs:

You assign a different value to that pointer.
The pointer was a local variable and execution exited from the block.

Your Program’s Data

14 Chapter 1: Debugging Memory Problems

If your program leaks a lot of memory, it can run out of memory. Even if it
doesn’t run out of memory, your program’s memory footprint becomes
larger. This increases the amount of paging that occurs as your program
executes. Increased paging makes your program run slower.

Here are some of the circumstances in which memory leaks occur:

Orphaned ownership—your program creates memory but does not
preserve the address so that it can deallocate it at a later time.
The following example makes this (extremely) obvious:
char *str;

for(i = 1; i <= 10; i++)
{

str = (char *)malloc(10*i);
}
free(str);
Within the loop, your program allocates a block of memory and assigns its
address to str. However, each loop iteration overwrites the address of the
previously created block. Because the address of the previously allocated
block is lost, its memory can never be made available to your program.
Concealed allocation—the action of creating a memory block is sepa-
rate from its use.
As an example, contrast the strcpy() and strdup() functions. Both do the
same thing: they make a copy of a string. However, the strdup() function
uses the malloc() function to create the memory it needs, while the
strcpy() function uses a buffer that your program creates.
In general, you must understand what responsibilities you have for allo-
cating and managing memory. For example, when your program receives
a handle from a library, the handle allows you to identify a memory block
allocated by the library. When you pass the handle back to the library, it
knows what memory block contains the data you want to use or manipu-

Figure 13: realloc() Problem
before calling realloc()

after calling realloc()

ptr 1

ptr 2

ptr 1

ptr 2

Using the Memory Debugger

Debugging Memory Problems Using TotalView: version 6.7 15

1. M
em

ory Problem
s

late. There may be a considerable amount of memory associated with the
handle, and deleting the handle without deallocating the memory associ-
ated with the handle leaks memory.
Changes in custody—the routine creating a memory block is not the
routine that frees it. (This is related to concealed allocation.)
For example, routine 2 asks routine 1 to create a memory block. At a later
time, routine 2 passes a reference to this memory to routine 3. Which of
these blocks is responsible for freeing the block?
This type of problem is more difficult than other types of problems in that
it is not clear when the data is no longer needed. The only thing that
seems to work consistently is reference counting. In other words, when
routine 2 gets a memory block, it increments a counter. When it passes a
pointer to routine 3, routine 3 also increments the counter. When routine
2 stops executing, it decrements the counter. If it is zero, the executing
routine frees the memory. If it isn’t zero, another routine frees it at
another time.
Underwritten destructors:—when a C++ object creates memory, it
must ensure that its destructor frees it. No exceptions. This doesn’t
mean that a block of memory cannot be allocated and used as a general
buffer. It just means that when an object is destroyed, it needs to com-
pletely clean up after itself.

For more information, see “Finding free() and realloc() Problems” on page 17.

Using the Memory Debugger ___________
Here is how you start the TotalView Memory Debugger:

1 Enable the Memory Debugger from within the Memory Debugger Window
or the CLI. You must enable the Memory Debugger before execution
begins.

2 Tell the Memory Debugger what operations to perform. These operations
include hoarding, painting, and telling it to notify you when problems
occur using the heap library. Notification means that the Memory Debugger
stops a program’s execution when problems using the heap API occur.

Whenever your program is stopped—for example, it is at a breakpoint or
you halted it—you can tell the Memory Debugger to create a view that
describes any program leaks or a report that describes currently allocated
memory blocks.

Memory Debugger
Overview

TotalView must be able to preload your program with the Memory Debug-
ger agent. In many cases, it can do this automatically. However, you must
manually link the agent if your application involves remote debugging. In
addition, TotalView cannot preload the agent for applications that run on
IBM RS/6000 platforms. For more information, see “Creating Programs for
Memory Debugging” on page 83.

Using the Memory Debugger

16 Chapter 1: Debugging Memory Problems

The following procedure describes how you begin using the Memory
Debugger:

1 After you start TotalView but before you start executing your program,
select the Tools > Memory Debugging command. The displayed window
shows the Configuration Page.

2 Before configuring the Memory Debugger, select one or more of the pro-
cesses shown in the Process Set area on the left.

3 If the Enable memory debugging check box isn’t checked, you need to
select it. If you have explicitly linked your program with the agent,
TotalView automatically checks it for you.

4 Start your program and run it to a breakpoint.

Before your program begins execution, you will need to set other options in
the Configuration Page:

Memory Event Notification—tells the Memory Debugger to stop exe-
cution and notify you if a heap event such as a deallocation or a problem
occurs. (See “Event and Error Notification” on page 18 for more informa-
tion.)
Memory Block Painting—tells the Memory Debugger to paint allo-
cated and deallocated memory and the pattern that the Memory Debug-
ger uses when it paints this memory. For more information, see “Finding
free() and realloc() Problems” on page 17 and “Block Painting” on page 47.

Figure 14: Configuration
Page

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.7 17

1. M
em

ory Problem
s

Memory Hoarding—tells the Memory Debugger to hoard deallocated
memory blocks, the size of the hoard, and the number of blocks that the
hoard can contain. For more information, see “Hoarding” on page 49.

Enabling,
Stopping, and
Starting

If your program is executing, you cannot enable or disable the Memory
Debugger. If you try, TotalView displays its Restart Now? Dialog Box:

Selecting Restart now tells TotalView to kill your program, enable or disable
the Memory Debugger, and then restart your program. If you select Restart
later, your program continues executing. After you restart your program,
the Memory Debugger will do what you asked it to.

If you turn on notification and all you want to do is stop TotalView from
notifying you about heap problems, Remove the check mark from the Con-
figuration Page’s Stop execution when error or event occurs check box.
While the Memory Debugger continues to track memory events, it no
longer stops execution if a problem occurs. Of course, your operating sys-
tem might terminate execution when an error occurs. However, your pro-
gram might continue executing. For example, many systems ignore a free()
request that tries to free memory that your program already freed.

Telling the Memory Debugger not to notify you when a problem occurs is
useful. For example, suppose you are calling functions in a shared library,
and you aren’t interested in or can’t debug this code and the library has
heap problems. Turning off notification lets you execute past this code. Do
this by setting a breakpoint at a location after the library function executes.
When execution stops, enable notification.

Finding free() and realloc() Problems _____
The Memory Debugger detects problems that occur when you allocate,
reallocate, and free heap memory. This memory is usually allocated by the
malloc(), calloc(), and realloc() functions, and deallocated by the free() and
realloc() functions. In C++, the Memory Debugger tracks the new and
delete operators. If your Fortran libraries use the heap API, the Memory
Debugger tracks your Fortran program’s dynamic memory use. Some For-
tran systems use the heap API for assumed-shape, automatic, and allocat-
able arrays. See your system’s man pages and other documentation for
more information.

Figure 15: Restart Now Dialog
Box

Finding free() and realloc() Problems

18 Chapter 1: Debugging Memory Problems

Event and Error
Notification

After you enable memory debugging and turn on notification, TotalView
stops execution if it detects a notifiable event such as a free problem.
There are a number of events that can cause the Memory Debugger to stop
execution. If you select the Advanced button within the Memory Debug-
ger’s Configuration Page, the Memory Debugger displays a dialog box that
lets you specify which of memory events will stop execution.

When execution stops, the PC is at an internal TotalView breakpoint. As the
following figure shows, the lines above the breakpoint have information
about what to do next.

TotalView also displays its Memory Event Details Window (see Figure 18 on
page 19):

This window has four areas, as follows:

The top line tells you what type of error or event occurred.
The Block Information area gives the memory location of the block and
its status.
The third area contains the function backtrace if the error or event is re-
lated to a block allocated on the heap. The Memory Debugger retains in-
formation about the backtrace that existed when the memory block was
allocated and the backtrace when it was deallocated. You can tell the
Memory Debugger which it should display by selecting either the Point of
Allocation or Point of Deallocation tab.
If a memory error occurred, the deallocation backtrace is often the same
as the backtrace being shown in the Process Window’s Source Pane. If the

Figure 16: Advanced

Figure 17: TotalView Internal
Memory Breakpoint

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.7 19

1. M
em

ory Problem
s

memory error occurs after your program deallocated this memory, the
backtraces are different.
The bottom area shows you where the allocation or deallocation oc-
curred in your program.

In some cases, the Memory Debugger does not display an allocation backtrace. For
example, if you try to free memory allocated on the stack or in a data section, there’s no
backtrace because your program did not allocate the memory.

If you need to redisplay the Memory Block Window after you dismiss it,
select the Tools > Memory Event Details command.

Types of Problems This section presents some trivial programs that illustrate some of the
free() and realloc() problems that the Memory Debugger detects. The errors
shown in these programs are obvious. Errors in your program are, of
course, more subtle.

Freeing Unallocated Space
The following section contains programs that free space that they cannot
deallocate.

Figure 18: Memory Error Block
Window

Finding free() and realloc() Problems

20 Chapter 1: Debugging Memory Problems

Freeing Stack
Memory

The following program allocates stack memory for the stack_addr variable.
Because the memory was allocated on the stack, the program cannot deal-
locate it.

int main (int argc, char *argv[])
{

void *stack_addr = &stack_addr;
/* Error: freeing a stack address */

free(stack_addr);
return 0;

}

Freeing bss Data The bss section contains uninitialized data. That is, variables in this section
have a name and a size but they do not have a value. Specifically, these
variables are your program’s uninitialized static and global variables.
Because they are contained in a data section, your program cannot free
their memory.

The following program tries to free a variable in this section:

/* Not initialized; should be in bss */
static int bss_var;

int main (int argc, char *argv[])
{

void *addr = (void *) (&bss_var);
/* Error: address in bss section */

free(addr);
return 0;

}

Freeing Data
Section Memory

If your program initializes static and global variables, it places them in your
executable’s data section. Your program cannot free this memory.

The following program tries to free a variable in this section:

 /* Initialized; should be in data section */
static int data_var = 9;

int main (int argc, char *argv[])
{

void *addr = (void *) (&data_var);
/* Error: adress in data section */

free(addr);
return 0;

}

Freeing Memory That Is Already Freed
The following program allocates some memory, then releases it twice. On
some operating systems, your program can SEGV on the second free request.

int main ()
{

void *s;
/* Get some memory */

s = malloc(sizeof(int)*200);
/* Now release the memory */

free(s);

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.7 21

1. M
em

ory Problem
s

/* Error: Release it again */
free(s);
return 0;

}

Tracking realloc() Problems
The following program passes a misaligned address to the realloc() func-
tion.

int main (int argc, char *argv[])
{

char *s, *misaligned_s, *realloc_s;

/* Get some memory */
s = malloc(sizeof(int)*64);

/* Reallocate memory using a misaligned address */
misaligned_s = s + 8;
realloc_s = realloc(misaligned_s, sizeof(int)*256));
return 0;

}

In a similar fashion, TotalView detects realloc() problems caused by passing
addresses to memory sections whose memory cannot be released. For
example, TotalView detects problems if you try to do the following:

Reallocate stack memory.
Reallocate memory in the data section.
Reallocate memory in the bss section.

Freeing the Wrong Address
TotalView can detect when a program tries to free a block that does not
correspond to the start of a block allocated using the malloc() function.
The following program illustrates this problem:

int main (int argc, char *argv[])
{

char *s, *misaligned_s;

/* Get some memory */
s = malloc(sizeof(int)*64));

/* Release memory using a misaligned address */
misaligned_s = s + 8;
free(misaligned_s);
free(s);
return 0;

}

Block Properties
and Event
Notification

When an error occurs, such as those discussed in “Types of Problems” on
page 19, the Memory Debugger stops program execution. (The Memory
Debugger can also stop execution when your program deallocates or real-
locates a memory block.) For example, if your program tries to free memory
already freed, the Memory Debugger stops execution. However, you won’t
know where and when this memory was first freed. This section describes a
procedure that tells the Memory debugger to give you this information.

Finding free() and realloc() Problems

22 Chapter 1: Debugging Memory Problems

Here’s a trivial program that contains a double free error:

01 int main ()
02 {
03 void *s;
04 /* Get some memory */
05 s = malloc(sizeof(int)*200);
06 /* Now release the memory */
07 free(s);
08 /* Error: Release it again */
09 free(s);
10 return 0;
11 }

Here’s the procedure:

1 Display the Memory Debugging Window by selecting the Tools > Memory
Debugging command.

2 After enabling memory debugging, check On within the Event Notification
area.

3 Select line 07 in the Process Window and press the Run To button in the
toolbar.

4 Dive on variable s. In the displayed Variable Window, dive on the pointer
value.

Figure 19: Variable Window for
Pointer s

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.7 23

1. M
em

ory Problem
s

5 After selecting on the pointer’s value, select the Tools > Block Properties
command. The Memory Debugger displays it’s Block Properties Window.

The control that tells the Memory Debugger to notify you when the block
is freed is within the top Memory Blocks area. You can either expand the
area and press the + symbol or you can press the Hide Backtrace
Information button at the bottom of this window. If you press this button,
you’ll see the following window:

Figure 20: Memory Block
Properties Window

Figure 21: Memory Block
Properties Window

Finding Memory Leaks

24 Chapter 1: Debugging Memory Problems

After selecting the Notify when deallocated check box, close the window.
Selecting this button tells the Memory Debugger to monitor this memory
block such that when your program frees it, it should stop execution and
let you know that this just occurred.

6 Select the Go button from the toolbar. After line 07 executes, the Memory
Debugger stops execution and displays the Memory Event Details Window.

Using procedures similar to this, you can track any deallocations that might
be interesting.

Finding Memory Leaks _________________
The TotalView Memory Debugger can locate your program’s memory leaks
and display information about them.

1 Before execution begins, enable the Memory Debugger. (See “Enabling,
Stopping, and Starting” on page 17.)

2 Run the program and then halt it where you want to look at memory prob-
lems. Allow your program to run for a while before stopping execution to
give it enough time to create leaks.

Figure 22: Memory Block
Properties Window

Finding Memory Leaks

Debugging Memory Problems Using TotalView: version 6.7 25

1. M
em

ory Problem
s

3 From the Memory Debugger Window (invoked using the Tools > Memory
Debugging command), select the Leak Detection tab. (See Figure 23 on
page 25.)

4 Select one or more processes in the Process Set area.
5 Select a view within the Generate View area and click the Generate View

button. For example, you might select Source View.
6 Examine the list. After you select a leak in the top part of the window, the

bottom of the window shows a backtrace of the place where the memory
was allocated. After you select a stack frame in the backtrace, TotalView
displays the statement where the block was created.

The backtrace that the Memory Debugger displays is the backtrace that
existed when your program made the heap allocation request. It is not the
current backtrace.

The line number displayed in the Memory Debugger Source Pane is the
same line number that TotalView displays in the Process Window Source
Pane. If you go to that location, you can begin devising a strategy for fixing
the problem. Sometimes you get lucky and the fix is obvious. In most
cases, it isn’t clear what was (or should be) the last statement to access a
memory block. Even if you figure it out, it’s extremely difficult to determine
if the place you located is really the last place your program needs this
data. At this point, it just takes patience to follow your program’s logic.

Figure 23: Leak Detection
Page: Source View

Fixing Dangling Pointer Problems

26 Chapter 1: Debugging Memory Problems

Many users like to generate a view that contains all leaks for the entire pro-
gram. Do this by setting a breakpoint on your program’s exit statement.
After your program stops executing, generate a Leak Detection View.

Using Watch
Points

For many types of memory problems, identifying where the problem
occurred is just the first step. Your next step is to look for the solution.
TotalView and the Memory Debugger can help. For example, here’s a proce-
dure that lets you identify when your program writes to a memory block:

1 Using the backtrace in the Leak Detection Page, identify where your pro-
gram allocated the memory.

2 Go to the Process Window and set a breakpoint after that line.
3 Restart your program and run it to that breakpoint.
4 Dive on the pointer and, if it is not automatically dereferenced, dive on

the pointer in the Variable Window.
5 Select the Tools > Watchpoint command and set a watchpoint.
6 Select Go.

Your program stops executing when the value contained at this memory
location changes. If there are a number of statements in your program that
write into this memory location, you might need to select Go a number of
times. Eventually, you will know when the last time your program changes a
value. Watchpoints do not, unfortunately, get triggered when your program
reads data.

Fixing Dangling Pointer Problems ________
Fixing dangling pointer problems is usually more difficult than fixing other
memory problems. First of all, you only become aware of them when you
realize that the information your program is manipulating isn’t what it is
supposed to be. Even more troubling, these problems can be intermittent,
happening only when your program’s heap manager reuses a memory
block. For example, if nothing else is running on your computer, the block
might never be reused. If there are a large number of jobs running, a deallo-
cated block could be reused quickly.

After you identify that you have a dangling pointer problem, you have two
problems to solve. The first is to determine where your program freed the
memory block. The second is to determine where it should free this memory.
Memory Debugger tools that can help you are:

Block painting, which tells the Memory Debugger to write a bit pattern
into allocated and deallocated memory blocks.
Hoarding, which tells the Memory Debugger to hold onto a memory
block when the heap manager receives a request to free it. This is most
often used to get beyond where a problem occurs. By allowing the pro-
gram to continue executing with correct data, you sometimes have a
better chance to find the problem. For example, if you also paint the
block, it becomes easy to tell what the problem is. In addition, your pro-
gram might crash. (Crashing while you are in TotalView is a good thing,

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.7 27

1. M
em

ory Problem
s

because TotalView will show the crash point. You immediately know
where the problem is.)
Watchpoints, which tell TotalView to stop execution when a new value is
written into a memory block. If the Memory Debugger is painting deallo-
cated blocks, you immediately know where your program freed the
block.
Block tagging (described in “Block Properties and Event Notification” on
page 21), which tells TotalView to stop execution when your program
deallocates or reallocates memory.

You enable painting and hoarding in the Memory Debugger Configuration
Page.

You can turn painting and hoarding on and off. In addition, you can tell the
Memory Debugger what bit patterns to use when it paints memory. For
more information, see “Block Painting” on page 31.

Dangling Pointers If you enable memory debugging, TotalView displays information in the
Variable Window about the variable’s memory use. The following small pro-
gram allocates a memory block, sets a pointer to the middle of the block,
and then deallocates the block:

main(int argc, char **argv)

{

int *addr = 0; /* Pointer to start of block. */

Figure 24: Configuration
Page

Fixing Dangling Pointer Problems

28 Chapter 1: Debugging Memory Problems

int *misaddr = 0; /* Pointer to interior of block. */

addr = (int *) malloc (10 * sizeof(int));

misaddr = addr + 5; /* Point to block interior */

/* Deallocate the block. addr and */

/* misaddr are now dangling. */

free (addr);

}

The following figure shows two Variable Windows. Execution was stopped
before the free() function executed. Both windows contain a memory indi-
cator saying that blocks are allocated.

After your program executes the free() function, the messages change, as
Figure 26 on page 29 shows.

Examining
Memory

So far, you’ve been reading about memory errors. If only things were this
simple. The large amount of memory available on a modern computer and
the ways in which an operating system converts actual memory into virtual
memory may hide many problems. At some point, your program can hit a
wall, thrashing the heap to find memory it can use or crashing because,
while memory is available, the operating system can’t find a block big
enough to contain your data. In these circumstances, and many others,
you can examine the heap to determine how your program is managing
memory.

Figure 25: Allocated Description
in a Variable Window

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.7 29

1. M
em

ory Problem
s

The Memory Debugger can display a lot of information, at times too much
information. In all cases, you’ll start by looking at what your program has
done with the heap. You’ll then be able to filter out information so to focus
on issues.

Begin by displaying the Graphical View within the Heap Status Page. Here’s
how:

1 Select the Heap Status Tab.
2 Select the Graphical View item on the pulldown list in the Generate View

area.
3 If you want the Memory Debugger to identify leaked memory in the dis-

play (and there’s no reason that it shouldn’t), select the ellipses (...) fol-
lowing this pulldown. This tells the Memory Debugger to display a
preferences dialog box. In this box, check the Label leaked memory blocks
item.

4 Press the Generate View Button.

The Memory Debugger responds by displaying a graphical view of the heap.
(See Figure 27 on page 30.) If your program’s heap is large, you may see a
window telling you what kind of processing the Memory Debugger is per-
forming. (See Figure 28 on page 30)

The display area has two parts. The upper contains many bars, each of
which represents one allocation. The bar’s color indicates if the memory
block is allocated, deallocated, leaked, or within the hoard.

The bottom area has three divisions. The first contains a key to the colors
used in the top area. In addition, it indicates how much memory is in each
state. For example, the program used for this example has allocated
1620.78 KB of memory.

Figure 26: Dangling Description
in a Variable Window

Fixing Dangling Pointer Problems

30 Chapter 1: Debugging Memory Problems

If you select a block, the center area contains information about this block.
When you select a block, the Memory Debugger highlights it within the top
area.

The right area lets you know how many other blocks were allocated from
the same location. (Actually, this just shows how many allocations had the
same backtrace. If your program got to the same place in different ways,
they’d have different backtraces, so they wouldn’t be considered related.)

Figure 27: Heap Status Page: Graphical View

Figure 28: Creating the
Graphical View Window

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.7 31

1. M
em

ory Problem
s

Now that you have this information, you can begin making decisions. Obvi-
ously, you’d fix the leaks. If there were a lot of small blocks, is your program
allocating memory too frequently? Should it be allocating memory in larger
blocks and managing the allocated memory directly? Is there a pattern of
allocations and deallocations that prevents reuse.

Memory managers tend to be lazy. Unless they can easily reuse memory, they just get
more. If you use the Memory Usage Page to monitor how your program is using mem-
ory, you’ll probably find that your program only gets bigger. Once your program grabs
memory from the operating system, it doesn’t like to give it back. And, while it could
reuse this memory if your program deallocates it, it is far easier and quicker to grab new
memory.

Filtering
You can remove information from Backtrace and Source Views by adding a
filter. For example, suppose you don’t want the Memory Debugger to show
blocks that are related to the strdup() function. By creating and applying a
filter (see “Filtering” on page 38), the Memory Debugger will remove this
information from the display. Here’s an example of the dialog box you use
to create a filter:

Block Painting When you enable block painting, TotalView paints a memory block with a
bit pattern. You can either specify a pattern or use the default, as follows:

The default allocation pattern is 0xa110ca7f, which was chosen because
it resembles the word “allocate”.
The default deallocation pattern is 0xdea110cf, which was chosen be-
cause it resembles the word “deallocate”. In most cases, you want
TotalView to paint memory blocks when they are deallocated.

Figure 29: A Filter Dialog Box

Fixing Dangling Pointer Problems

32 Chapter 1: Debugging Memory Problems

The following figure shows a variable whose memory was painted:

If the Memory Debugger paints memory for a variable that uses more memory than a
word—for example, a double-precision variable—the value that TotalView displays in
the Variable Window won’t look like the paint pattern. For example, the value in an
allocated memory block for a double-precision number is: -6.81916624944375e-147.
You can, of course, cast the value to single precision if you are unsure if the value being
displayed is your painting value.

Setting the allocation pattern lets you know if your program initialized a
variable. For example, if you display the variable in a Variable Window and
see the paint pattern, you’ll immediately know that you have a problem.

If you also set a watchpoint on the memory block before your program
deallocates it—you might only be able to set it on the first few words of the
block—TotalView stops program execution just after the Memory Tracker
paints it.

If you are setting a watchpoint on just one element of a structure or an
array, you need to dive on the element so that it is the only item in the Vari-
able Window. For example, if you want to set a watchpoint on the colour
variable in the previous figure, dive on colour, and then select the Tools >
Watchpoint command to set the watchpoint.

If you change the deallocation pattern while your program executes, the
pattern lets you know when the block was deallocated. That is, because the
Memory Debugger is using a different pattern after you change it, you will
know if the memory was allocated or deallocated before or after you made
the change.

If you are painting deallocated memory, you could be transforming a work-
ing program into one that no longer works. This is good as TotalView will be
telling you about a problem.

Hoarding You can stop your program’s memory manager from immediately reusing
memory blocks by telling the Memory Debugger to hoard (that is, retain)
blocks. Because memory blocks aren’t being immediately reused, the data

Figure 30: Block Painting

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.7 33

1. M
em

ory Problem
s

within the blocks isn’t being overwritten. This means that your program can
continue running with the correct information even though it is accessing
deallocated memory. If this weren’t the case, any pointers into this memory
block would be dangling. In some cases, this uncovers other errors, and
these errors can help you track down the problem.

If you are painting and hoarding deallocated memory (and you should be),
you might be able to force an error when your program accesses the
painted memory.

The Memory Debugger holds onto hoarded blocks for a while before
returning them to the heap manager so that the heap manager can reuse
them. As the Memory Debugger adds blocks to the hoard, it places them in
a first-in, first-out list. When the hoard is full, the Memory Debugger
releases the oldest blocks back to your program’s memory manager.

Example 1: Finding a Multithreading Problem
When a multithreaded program share memory, problems can occur if a
memory block is deallocated by one thread while it still being used by
another. Because threads execute intermittently, problems are also inter-
mittent. If you hoard memory, the memory will stay viable for longer
because it cannot be reused immediately.

If intermittent program failures stop occurring, you know what kind of
problem exists.

One advantage of this technique is that you can relink your program (as is
described in Chapter 4, “Creating Programs for Memory Debugging,” on
page 83) and then run TotalView and the Memory Debugger against a pro-
duction program that has not been compiled using –g compiler debugging
option.

If you don’t know where the problem occurs, you will probably need to
increase the number of blocks being hoarded and the hoard size.

Example 2: Finding Dangling Pointer References
Hoarding is most often used to find dangling pointer references. Once you
know the problem is related to a dangling pointer, you need to locate
where the memory is deallocated. One technique is to use block tagging
(see “Block Properties and Event Notification” on page 21). Another is to use
block painting to write a pattern into deallocated memory. If you also hoard
painted memory, the heap manager will not be able to reallocate the mem-
ory.

If the memory was not hoarded, the heap manager could reallocate the
memory block. When it is reallocated, a program can legitimately use the
block, changing the data in the painted memory. If this occurs, the block is
both legitimately allocated and its contents are legitimate in some context.
However, the older context has been destroyed. Hoarding delays the recy-
cling of the block. In this way, it extends the time available for you to detect
that your program is accessing deallocated memory.

Fixing Dangling Pointer Problems

34 Chapter 1: Debugging Memory Problems

Debugging Memory Using TotalView: version 6.7 35

Using the Memory
Debugger Window

2

This chapter examines the Memory Debugger Window. It includes
the following topics:

“About the Memory Debugger” on page 35
“Common Operations” on page 37
“Configuration Page” on page 44
“Leak Detection Page” on page 52
“Heap Status Page” on page 56
“Memory Usage Page” on page 60

About the Memory Debugger ___________
When you configure the Memory Debugger or display a view, the action that
the Memory Debugger takes is based on the processes that you select on
the left side of the window. (The figure on the next page shows this win-
dow.)

The controls in the Generate View area tell the Memory Debugger which
view to create on the right side of the window. This information is called a
view because the Memory Debugger just shows a part of the information
contained in the Memory Debugger tracking agent. (For information on this
agent, see “Behind the Scenes” on page 5.)

Process Set
Selection

Configuring the Memory Debugger tells it which processes to track and
what actions to perform. For example, the Memory Debugger Window
shown on the next page can track more than one program. One of these
programs has more than one process. If you select three processes out of
the nine processes in this window, a leak detection view only shows leaks
from these three processes. It ignores leaks in other processes.

About the Memory Debugger

36 Chapter 2: Using the Memory Debugger Window

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you’ll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Generate View
Area

When you are viewing any page except the Configuration Page, you must
tell the Memory Debugger which view it should display. (Specifying a view
tells the Memory Debugger how it should display its information.) The con-
trols in this area of the window are as follows:

Pulldown list Select a view from this list. Clicking on the arrow on the
right side of this list displays your choices. This pull-
down is not active when the Memory Debugger is dis-
playing the Configuration Page.

Click this button to display a dialog box that contains
preferences that modify or affect a view. The discus-
sions of those page in other sections of this chapter
describes these preferences.

Figure 31: The Memory Debugger

Common Operations

Debugging Memory Using TotalView: version 6.7 37

2. M
em

ory Tracker W
indow

Enable Filtering Selecting this check box tells the Memory Debugger to
apply filters to the information it is displaying. For addi-
tional information, see “Filtering” on page 38.

Click this button to display the Data Filters Dialog Box.
For more information, see “Filtering” on page 38.

Generate View After you select a view, pressing this button tells the
Memory Debugger to display it.

If you need to save the information contained within a
view, select this button. The Memory Debugger
responds by displaying a dialog box that lets you write
this information to disk. For more information, see
“Saving Views” on page 41.

Common Operations___________________

Rows and
Columns

If a page displays information in columns, you can resize columns, change
the column order, and control which columns the Memory Debugger dis-
plays, as follows:

To resize a column, place the mouse pointer over the vertical column
separator in the header. Press your left mouse button and drag the sepa-
rator so that you’ve made the column as wide or as narrow as you want it
to be. After you finished dragging the separator, release the left mouse
button. The following figure shows the second column being made wider
(and the first being made smaller):

If you double-click on a separator, the Memory Debugger readjusts all
widths.
To change the column order, place your mouse pointer in a column
header, press your left mouse button, and then drag the column to its
new position. After it is in its new position, release the left mouse but-
ton. In the following example, the Begin Address column is being moved
to the left:

To tell the Memory Debugger to hide a column or display a column you
previously hid, right-click anywhere in the column header area. From the
displayed context menu, click on an entry. If the entry is hidden, the

Figure 32: Resizing

Figure 33: Changing Position

Common Operations

38 Chapter 2: Using the Memory Debugger Window

Memory Debugger displays it. If the column is displayed, the Memory
Debugger hides it. The following figure shows this context menu:

To tell the Memory Debugger to sort a column, click on the column
heading. You can only sort some columns.

Filtering The amount of information that the Memory Debugger displays when you
ask for a Leak Detection or Heap Status View can be considerable. In addi-
tion, this information includes memory blocks allocated within any shared
library that your program uses. In other cases, your program may be allo-
cating memory in many different ways and you only want to focus on a few
of them. You can eliminate information from a backtrace or source view by
using a filter. Filtering is a two-step process:

1 Create a filter by selecting the button that is to the right of the
Enable Filtering check box within the Generate View area. You can also
use the Tools > Filter command.

2 At a later time, select the Enable Filtering check box.

When filtering is enabled, the Memory Debugger looks at each enabled fil-
ter and applies it to the view’s data. In addition, each can have any number
of actions associated with it.

Adding, Deleting,
Enabling and

Disabling Filters

After you select the button that is to the right of the Enable Filtering
check box, the Memory Debugger displays a dialog box that allows you
add, delete, enable, delete, and change the order in which the Memory
Debugger applies filters. (See Figure 35 on page 39)

The controls within this dialog box are as follows:

 Enable and Disable
When checked, the filter is enabled.

Add After pressing this button, the Memory Debugger dis-
plays the Add Filter Dialog Box. Using that dialog box,
you can define one filter. That dialog box will be dis-
cussed later in this section.

Edit Displays a dialog box that allows you to change the
selected filter’s definition. The displayed Edit Filter Dia-
log Box is identical to the Add Filter Dialog Box.

Remove Deletes the selected filter.

Figure 34: Displaying and
Hiding Columns

Common Operations

Debugging Memory Using TotalView: version 6.7 39

2. M
em

ory Tracker W
indow

 Up and Down
Moves a filter up or down in the filter list. As the Mem-
ory Debugger applies filters in the order in which they
appear in this list, you should place filters that remove
the most entries at the top of the list. As filtering can
be a time-consuming operation, this can increase per-
formance.

Enable All Enables (checks) all filters in the list.
Disable All Disables (unchecks) all filters in the list.

Adding and
Editing Filters

After you select the Add button within the Memory Debugging Data Filters
Dialog Box, the Memory Debugger displays the Add Filter Dialog Box. (See
Figure 36 on page 40.)

Selecting the Edit button within the Memory Debugging Data Filters Dialog
Box tells the Memory Debugger to display a nearly identical window.

The controls within this window are as follows:

Filter name Enter the name of the filter. This name will appear in
the Memory Debugging Data Filters Dialog Box.

Share filter Selecting this button tells the Memory Debugger that
the filter you are creating will be shared. Shared means
that anyone using TotalView can apply the filter.

This button only appears if you have write permissions for the
TotalView lib directory.

Add Pressing this button tells TotalView to add a blank line
beneath the last criterion in the list. You can now enter
information defining criterion within this new line.

Remove Deletes the selected criterion. To select a criterion,
select the number to the left of the definition.

Figure 35: Memory Debugging
Data Filters Dialog Box

Common Operations

40 Chapter 2: Using the Memory Debugger Window

Up and Down Changes the order in which criteria appear in the list.
While changing the order doesn’t change the results of
the filtering operation, placing criteria that exclude the
most information at the top of the list improves perfor-
mance.

Exclude data matching
If you have more than one criterion, the selected radio
button indicates if any or all of the criteria have to be
met.

any of the following
When selected, a memory entry is removed when the
entry matches any of the criteria in the list.

all of the following
When selected, a memory entry is only removed if it ful-
fills all of the criteria.

Evaluate When evaluating a filter, you can limit which backtraces
the Memory Debugger looks at.

allocation focus entry only
When selected, tells the Memory Debugger that it
should remove the entry only if the criteria you set is
valid on an entry that is also the allocation focus.

The allocation focus is the point in the backtrace where
the Memory Debugger believes your code called
malloc().

For example, if you define a filter condition that says
Function Name contains my_malloc and set this entry
to allocation focus entry only, the Memory Debugger
only removes blocks whose allocation focus contains

Figure 36: Add Filter Dialog Box:
Showing Properties

Common Operations

Debugging Memory Using TotalView: version 6.7 41

2. M
em

ory Tracker W
indow

my_malloc. That is, it only removes blocks that were
allocated directly from my_malloc.

In contrast, if you set this entry to all backtrace entries,
the Memory Debugger removes all blocks that contain
my_malloc anywhere in their backtrace.

all backtrace entries
When selected, the Memory Debugger applies filter cri-
teria to all function names within the backtrace.

Criteria A filter is made up of criteria. Each criterion has three
parts: a property, an operator, and a value. That is, you
can indicate what the Memory Debugger looks for. For
example, you can look for a Process/Library Name (the
property) that contains (the operator) strdup (the value).

Property When evaluating an entry, the Memory Debugger can
look at one of eight properties for one criterion. (See
Figure 36 on page 40.) Select one of the items from the
pulldown list. These items are:

Process/Library Name
Source File Name
Class Name
Function Name
Line Number
Size (bytes)
Count
PC

Operator The operator indicates the relationship the value has to
the property. (See Figure 37 on page 42.) Select one of
the items from the pulldown list. If the property you’ve
selected is a string, the Memory Debugger displays the
following list:

contains
not contains
starts with
ends with
equals
not equals

If the item is numeric, it displays the following list:

<=
<
=
!=
>
>=

Value Type a string or a number that indicates what is being
compared.

Saving Views If you need to write view information to disk, press the button, which is
immediately to the left of the Generate View button. The Memory Debugger

Common Operations

42 Chapter 2: Using the Memory Debugger Window

responds by displaying a dialog box with two tabs. Both tabs are shown in
the following illustration:

General Page The General Page contains the controls that let you specify what you want
written. Here is what these controls do:

Figure 37: Add Filter Dialog Box: Showing Operators

Figure 38: Saving Views

Common Operations

Debugging Memory Using TotalView: version 6.7 43

2. M
em

ory Tracker W
indow

Output File The controls within this area tell the Memory Debugger
where it should write memory information.

File Enter the name of the file being created. You can
change this from its default value by editing the text.

Browse Press this button to display a dialog box that lets you
select the directory in which the Memory Debugger will
write the file.

File type Select a file type, At version 6.7, the only format you
can select is text.

Options The controls within this area tell the Memory Debugger
what additional information it should write into the file.

Show view description information
When selected, the Memory Debugger writes informa-
tion about the view type, data displayed, the user cre-
ating the file, and the host, date, and the comment
recorded in the Description Page.

Show process information
When selected, the Memory Debugger writes informa-
tion about the processes that were selected when you
generate the view.

Show backtraces
When selected, the Memory Debugger writes stack
backtrace information for the memory allocations in
the view. If the view being displayed already contains
backtraces, the Memory Debugger ignores this option.

Selecting this option increases the time the Memory
Debugger needs to create the report. In addition, the
size of the created file will be much larger.

Show enabled filters
When selected, the Memory Debugger names and
describes the filters it used when it generated the view.

Source Code The Memory Debugger can also display lines from your
source code.

Show source code at the point of allocation
When selected, the Memory Debugger displays source
code information.

Lines shown above and below the point of allocation
Tells the Memory Debugger how many lines of source
code above and below the allocation statement should
also be displayed.

Line length (in characters)
Tells the Memory Debugger how many characters it
should use in each line when displaying information.
Lines that are longer than this length are truncated.

Configuration Page

44 Chapter 2: Using the Memory Debugger Window

Description Page If you are writing a number of files, adding comments can help you identify
the report. You can enter the following information:

Title If the default title isn’t what you want, enter something
more descriptive here.

Comments Enter text that describes the view information being
written to disk.

Configuration Page ____________________
The controls on the Configuration Page direct the actions that the Memory
Debugger performs. They also allow you to save and restore settings that
you have saved to disk. The following figure shows this page:

Current Settings
Page

The current settings page is where you tell the Memory Debugger which
actions it should take when memory events occur. In addition, you can tai-
lor these actions to your needs.

While you must explicitly tell the Memory Debugger to track your program’s use of the
heap API, you do not need to enable memory debugging to obtain a Memory Usage
View.

Figure 39:
Configuration
Page

Configuration Page

Debugging Memory Using TotalView: version 6.7 45

2. M
em

ory Tracker W
indow

The Enable memory debugging check box tells the Memory Debugger if it
should track your program’s use of the heap API. If TotalView can dynami-
cally enable memory debugging, selecting this button loads the Memory
Debugger. Most computing architectures do allow TotalView to enable the
Memory Debugger before your program begins executing. However,
TotalView cannot directly enable programs that run on an IBM RS/6000 or
which run remotely. See Chapter 4, “Creating Programs for Memory Debugging,”
on page 83 for more information.

You cannot enable or disable the Memory Debugger while your program is
executing. If you try, the Memory Debugger opens a dialog box asking if it
should restart your program.

The third line of this error message has the name of the program or process
that must be restarted.

Event
Notification

If a memory event occurs using a function within the heap API, the Memory
Debugger can tell TotalView to stop the program’s execution so that you
can determine the source of the event. For more information, see “Finding
free() and realloc() Problems” on page 17.

Here is a description of the controls in this section:

Stop execution when an event or error occurs
Checking this box tells the Memory Debugger to stop
program execution and display a dialog box when it
detects that an event occurred that is related to using
the heap API.

You can turn notification on and off both before and
while your program is executing.

Advanced Selecting this button tells the Memory Debugger to dis-
play a dialog box from which the events for which the
Memory Debugger will stop execution. (See Figure 42
on page 46. By default, notification occurs for all
events. You can individually turn an event off if you
need to.)

Figure 40: Restart Now Dialog
Box

Figure 41: Memory Error
Notification Area

Configuration Page

46 Chapter 2: Using the Memory Debugger Window

When an event occurs, the Memory Debugger stops program execution and
tells TotalView to display its Memory Event Details Window. (See Figure 43
on page 46.)

Figure 42: Current Settings Event
Dialog Box

Figure 43: Memory Error
Details Window

Configuration Page

Debugging Memory Using TotalView: version 6.7 47

2. M
em

ory Tracker W
indow

This window has four areas, as follows:

The top line tells you what type of error or event occurred.
The Block Information area gives the memory location of the block and
its status.
The third area contains the function backtrace if the error or event is re-
lated to a block allocated on the heap. The Memory Debugger retains in-
formation about the backtrace that existed when the memory block was
allocated and the backtrace when it was deallocated. You can tell the
Memory Debugger which it should display by selecting either the Point of
Allocation or Point of Deallocation tab.
If a memory error occurred, the deallocation backtrace is often the same
as the backtrace being shown in the Process Window’s Source Pane. If the
memory error occurs after your program deallocated this memory, the
backtraces are different.
The bottom area shows you where the allocation or deallocation oc-
curred in your program.

In some cases, the Memory Debugger does not display an allocation backtrace. For
example, if you try to free memory allocated on the stack or in a data section, there’s no
backtrace because your program did not allocate the memory.

If you need to redisplay the Memory Block Window after you dismiss it,
select the Tools > Memory Event Details command.

Memory Block
Properties

Window

You can obtain additional information about the block associated with an
event if you press the View in Block Properties window button that is at the
bottom of the Memory Event Details Window. (See Figure 44 on page 48.)

The information in this window is a combination of what can be displayed
in other views. For example, the bottom portion is similar to a Source View
displayed in a Heap Status view. Some of the top portion is what you will
see in a Heap Status Graphical View. If the block is associated with an
event, this information is also displayed.

You’ll find more information about this window in “Block Properties and Event
Notification” on page 21 and in the online help.

Block Painting When you enable memory block painting, the Memory Debugger writes a
bit pattern into newly allocated and newly deallocated heap memory
blocks. For information on using block painting, see “Block Painting” on
page 31. (Figure 45 on page 48 shows block painting controls.)

Here is a description of these controls:

Pattern for allocations
The Memory Debugger uses the bit pattern in this box
when it paints heap memory that was just deallocated.
It uses the same pattern for normal allocations and
zero-initialized allocations, which are allocations cre-
ated by functions such as calloc(). The pulldown list
contains patterns that you used previously.

Configuration Page

48 Chapter 2: Using the Memory Debugger Window

When you click the button to the right of the pattern
pulldown list, the Memory Debugger displays a dialog
box into which you can type a new pattern:

If your program has not started executing, the Memory
Debugger might not be able to display a pattern. If it
cannot display a pattern, it displays <pending>.

You can change this pattern at any time and as many
times as you want while your program is executing.

Figure 44: Memory Block
Properties Window

Figure 45: Memory Block
Painting Area

Figure 46: Allocation Paint
Pattern Dialog Box

Configuration Page

Debugging Memory Using TotalView: version 6.7 49

2. M
em

ory Tracker W
indow

Changing the pattern can help you identify when your
program allocated a memory block. For example, when
you see a pattern, you can tell if it was painted before
or after you made a change.

If a data value uses more bits than indicated by the
paint pattern, TotalView interprets the value using the
number of bytes that the variable uses, not the number
of bytes in the paint pattern. This means that you
might need to cast the displayed value.

If you uncheck this box, the Memory Debugger stops
painting allocated memory. You can recheck this box at
a later time without having to restart your program.

Apply pattern to allocations
When On is selected, the Memory Debugger paints allo-
cated memory using the bit pattern shown in the
Pattern for allocations text field.

Apply pattern to zero initialized allocations
When On is selected, the Memory Debugger paints allo-
cated memory that is set to zero by calls such as
calloc() using the bit pattern shown in the Pattern for
allocations text field.

You cannot paint zero-allocated memory unless you are
also painting normal allocations. If you set the Apply
pattern to allocations to Off, the Memory Debugger
also sets this control to Off.

Setting this option to On can break your program if you depend
upon the allocated memory being set to zero.

Pattern for deallocations
The Memory Debugger uses the bit pattern in this box
when it paints newly deallocated heap memory. For
more information, see “Pattern for allocations” on page 47.

Apply pattern to deallocations
When On is selected, the Memory Debugger paints
deallocated memory using the bit pattern shown in the
Pattern for deallocations text field.

Hoarding The Memory Debugger can delay handing freed memory back to the heap
manager. This is called hoarding. For more information, see “Hoarding” on
page 32.

Figure 47: Memory Hoarding
Area

Configuration Page

50 Chapter 2: Using the Memory Debugger Window

Here is a description of these controls:

Hoard memory on deallocation
When On is selected, the Memory Debugger hoards
memory. You can change this value while your program
is executing.

If you set this value to Off while your program is exe-
cuting, the Memory Debugger no longer hoards newly
deallocated blocks. It does not, however, release
blocks that it previously retained.

If the hoard is full and the Memory Debugger needs to
hoard a new block, it releases the oldest blocks (that is,
those that it first hoarded) so there’s enough room in
its hoard buffer. You can change the size of the hoard
using the next two controls.

Maximum KB to hoard
By default, the hoard can grow to 256 KB. You can
change the hoard’s buffer size by changing this value.

Maximum blocks to hoard
By default, the hoard can contain up to 32 memory
blocks. You can change the number of blocks by chang-
ing this value.

The gray area underneath these controls indicates the Current Size of the
hoard. You are told home many kilobytes the hoard is using and how many
different blocks are contained within it.

Save
Configuration

Page

The Save Configuration Page (see Figure 48 on page 51) contains four sets
of controls. The first three, Event Notification, Block Painting, and Hoarding
are the same as the controls within the Current Settings Page and have
already been discussed in this topic. The fourth, Logging, is new.

Logging can only be specified in a saved file that is read when TotalView is initialized.
You cannot not specify logging interactively.

The controls in this area are:

Log Memory Debug Information
When set to On, the Memory Debugger writes its infor-
mation to stdout, stderr, or to a file. You can edit the
file name. Select the button to name the directory
into which the Memory Debugger writes information.
By default, it writes information into the program’s di-
rectory.

Log all allocations on exit
When set to On, the Memory Debugger writes alloca-
tion information to the location set in the Log Memory
Debug Information command.

The four commands at the bottom are as follows:

Get Current Settings
Sets the controls within this page to be the same as
those that set on the Current Settings Page.

Configuration Page

Debugging Memory Using TotalView: version 6.7 51

2. M
em

ory Tracker W
indow

Apply Settings Sets the controls on the Current Settings Page to be
the same as those on this page.

This command ignores changes that occur within the Logging
area. Logging can only be enabled if it is enabled in a
default.hiarc file contained in your current directory or in your
.totalview/hia directory. If your configuration file has another
name or is stored elsewhere, you must type the file’s name and
location in the TVHEAP_ARGS variable.

Load Reads a saved configuration file and sets the controls
on this page to those values. After loading configura-
tions, you still need to use the Apply Settings com-
mand to make them active.

After pressing this button, the Memory Debugger dis-
plays an explorer window that you can use to locate
the file you want to load.

Save Writes the configuration displayed in this page to a file.
After pressing this button, the Memory Debugger dis-
plays an explorer window that you can use to locate
the directory into which you want to write the file. You
can also use the explorer window to enter a name for
this file.

Figure 48: Configuration
Page

Leak Detection Page

52 Chapter 2: Using the Memory Debugger Window

Presetting the
Memory

Debugger

The Memory Debugger gives you several ways in which you can preset val-
ues so that they do not have to be set in the Memory Debugger. The follow-
ing list explains the places where you can preset values:

1 After writing a configuration file, you can specify that TotalView read
the values in automatically. In order, it looks in three places: (1) the
TVHEAP_CONFIG_FILE environment variable, (2) a file named
default.hiarc contained within the current directory, and (3) a file
named hia/default.hiarc contained within your .totalview subdirec-
tory.

2 You can specify values using the TVHEAP_ARGS environment vari-
able. For more information, see “Using the TVHEAP_ARGS Variable” on
page 90.

Leak Detection Page ___________________
The Memory Debugger can display information about the leaks it discovers
in two ways: using a Source View or a Backtrace View. Each view displays
approximately the same information.

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you’ll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Source View The Source View organizes the leaks in your program by the program, rou-
tine, file, and block.

To create this view:

Select the processes for which you want information in the Process Set
area.
Select Source View, and then select Generate View.

In this view, the first column, Process, contains a hierarchical display orga-
nizing your program’s information. The Backtrace and Source Panes con-
tain additional information about the line you select in the Memory Blocks
Pane. In other words, this view organizes the information in the same way
that your program is organized.

Figure 49 on page 53 shows a Source View. In this figure, the bottom-most
rows in the hierarchy contain information about an individual leak. As you
go up the tree towards the process name, the Memory Debugger summa-
rizes the number of bytes and the number of leaks associated with the
information at lower levels of the tree. In this example, the program leaked
625.23 KB and 3,140 allocations were associated with leaks.

Leak Detection Page

Debugging Memory Using TotalView: version 6.7 53

2. M
em

ory Tracker W
indow

This explanation and the figure underemphasize the leak summary. Programs do leak
memory. it is usually not practical to fix all leaks. If you click on the Bytes columns, the
Memory Debugger sorts the table so that you can see what locations are leaking the
most memory. This lets you focus on places leaking the most memory.

When you click on a line in the Memory Blocks Pane, the Memory Debugger
shows information in the Backtrace Pane, as follows:

The backtrace being displayed is the one that existed when your pro-
gram allocated the memory block. The Memory Debugger highlights the
frame that it thinks is the one you should be focusing on. That is, it high-
lights where the memory allocation was made. If it guesses wrong, you
can reset the hierarchy of backtraces by right-clicking your mouse on the
backtrace that you want displayed, as follows.

From the context menu, select Set allocation focus level.
For example, assume that you have created a function named
my_malloc() that filters all of your memory allocations. The Memory

Figure 49: Leak Detection
Page: Source View

Figure 50: Backtrace and Source
Panes

Leak Detection Page

54 Chapter 2: Using the Memory Debugger Window

Debugger would probably guess that this is the function to highlight in the
Backtrace Pane. However, you probably want to set the allocation focus
on the function that called my_malloc(). Do this by selecting that func-
tion, and then right-clicking on it to invoke the Set allocation focus level
command.
The Source Pane shows the line in your program that contained the
memory allocation statement. When you click on a backtrace ID, the
Memory Debugger updates the Source Pane to show the line. The line
number associated with this line is the same line number that appears in
the Process Window Source Pane.

You can set two preferences for Leak Detection views. After displaying the
preferences dialog box, the Memory Debugger displays the following dialog
box:

To set preferences associated with the Source View, select the button
within the Generate View area on the left. The preferences are as follows:

Check interior pointers during leak detection
Tells the Memory Debugger to consider a block as
being referenced if a pointer is pointing anywhere
within the block instead of just at the block’s starting
location. In most programs, the code should be keep-
ing track of the block’s boundary. However, if your
C++ program is using multiple inheritance, you may
be pointing into the middle of the block without know-
ing it.

Use this option with some caution as it can affect per-
formance.

Figure 51: Leak Detection
Source View Preferences

Leak Detection Page

Debugging Memory Using TotalView: version 6.7 55

2. M
em

ory Tracker W
indow

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Backtrace View The Backtrace View organizes the leaks in your program by the backtrace
number created by the Memory Debugger. To create this view, select
Backtrace View, and then select Generate View. In this view, the first col-
umn, Process, has a numeric list of all the backtrace ID numbers that the
Memory Debugger creates.

When you look at one backtrace, you might be seeing the rolling together
of many leaks into one. You can tell how many leaks are associated with
one ID by looking at the Count column. In this example, 16 leaks are asso-
ciated with backtrace ID 12.

When you click on a line having a source code associated with it, the Mem-
ory Debugger displays that line in its Source Pane.

The backtrace being displayed is the one that existed when your program
allocated the memory block. The Memory Debugger highlights the frame
that it thinks is the one you should be focusing on. That is, it highlights
where the memory allocation was made. If it guesses wrong, you can reset

Figure 52: Leak Detection
Page: Backtrace View

Heap Status Page

56 Chapter 2: Using the Memory Debugger Window

the hierarchy of backtraces by right-clicking your mouse on the back trace
that you want displayed, as follows.

From the context menu, select Set allocation focus level.

For example, assume that you have created a function named my_malloc()
that filters all of your memory allocations. The Memory Debugger would
probably guess that this is the function to highlight in the Backtrace Pane.
However, you probably want to set the allocation focus on the function
that called my_malloc(). Do this by selecting that function, and then right-
clicking on it to invoke this command.

To set preferences associated with the Backtrace View, select the button
within the Generate View area on the left. The preferences are as follows:

Check interior pointers during leak detection
Tells the Memory Debugger to consider a block as
being referenced if a pointer is pointing anywhere
within the block instead of just at the block’s starting
location. In most programs, the code should be keep-
ing track of the block’s boundary. However, if your
C++ program is using multiple inheritance, you may
be pointing into the middle of the block without know-
ing it.

Use this option with some caution as it can affect per-
formance.

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Heap Status Page ______________________
The Heap Status Page displays information about all memory blocks that
your program has not yet freed. The views shown in this page can be quite
large. You can tell the Memory Debugger to display a Graphical, Source, or
Backtrace View. Figure 54 on page 57 shows a Heap Status Source View.

Source and
Backtrace Views

The Source and Backtrace Views within the Leak Detection page contain
the same type of information that these view contain with the Heap Status
Page. The sole difference is, of course, that these views in the Heap Status
Page contain all memory allocations, not just allocations that represent
leaks.

Figure 53: Backtrace and Source
Panes

Heap Status Page

Debugging Memory Using TotalView: version 6.7 57

2. M
em

ory Tracker W
indow

In most cases, an individual item is not very remarkable or noteworthy.
However, the “rolled-up” information about your allocations can help you
better understand your program’s behavior.

For example, if your program’s size is greater than you’d expect it to be,
you can select the Bytes column so that the largest allocations are all
grouped together. Concentrating on the statements allocating the most
memory should lead you understand your program’s behavior.

Similarly, if your program is allocating many small memory blocks, these
allocations might be hurting performance. Looking at the information in
the Bytes and Count columns might also give you some hints about where
you can improve performance.

If you are displaying a Source View, you can display a Block Properties Win-
dow by right-clicking on a block in the top area, then selecting Properties.
For more information, see “Memory Block Properties Window” on page 47.

You can also tell the Memory Debugger to display leaks in a different color.
For more information, see “Heap Status Preferences” on page 59.

For more information on the contents of this page, see “Leak Detection Page”
on page 52.

Graphical View For programs making extensive use of the heap API, the information pre-
sented within the Heap Status views can be overwhelming. In these cases

Figure 54: Heap Status
Page: Source View

Heap Status Page

58 Chapter 2: Using the Memory Debugger Window

and others, you may want to begin by displaying a graphical view of the
heap. (See “Heap Status Page: Graphical View” on page 58)

You can create this view by selecting Graphical View and then pressing the
Generate View button.

The Graphical View has two parts:

The upper portion displays allocated blocks of memory.
The bottom contains two tabs: Heap Information and Backtrace/Source.
The information displayed when you select Backtrace/Source is the same
as the Memory Debugger displays in the Source and Backtrace views. For
information on the contents of these views, see “Leak Detection Page” on
page 52

The length of each block in the upper portion is proportional to the size of
the block. You can change the relative size of these blocks to see more or
less information by selecting the magnifying glass icons above and to the
right of the graphical display. The upper left corner within the graphical area
contains general information.

The information in the top and bottom portions is linked. For example, if
you select a block within the graphical area, the Memory Debugger displays
information about the block in the bottom area. The Memory Debugger
displays the selected block in yellow. It displays blocks having the same
backtrace in green. If you are displaying the Heap Information Page, you’ll

Figure 55: Heap
Status Page:
Graphical
View

Heap Status Page

Debugging Memory Using TotalView: version 6.7 59

2. M
em

ory Tracker W
indow

see summary information about this block. If you are displaying the Source/
Backtrace Page, you’ll see the source line and backtrace associated with the
block. If you select a source line or backtrace within this page, the Memory
Debugger highlights the blocks associated with that source line and back-
trace.

The three areas within the Heap Information page are as follows:

Heap: Contains a key to the colors used in displaying blocks and a sum-
mary of how much memory is associated with each of the four allocation
types displayed.
Selected Block: Describes the block that you select. The only one of the
five types whose meaning may be obscure is Backtrace ID. This is an
identifier created by the Memory Debugger that it uses to associate dif-
ferent backtraces. You may find this number useful as you are examining
memory information.
Related Blocks: If the backtrace associated with a memory allocation is
identical to the backtrace that existed when a previous allocation oc-
cured, the Memory Debugger assigns the same backtrace ID to the newly
created allocation. When you select a block, the Memory Debugger dis-
plays information about all blocks having the same backtrace ID.

You can display a Block Properties Window by right-clicking on a block in
the top area, then selecting Properties. For more information, see “Memory
Block Properties Window” on page 47.

Heap Status
Preferences

When you select the button to the left of the view pulldown, the Memory
Debugger displays a preference dialog box. The following figure shows the
right side of each of the Heap Status preferences.

Here is what these preferences let you do:

Data to Display (Source and Backtrace View) When displaying a Backtrace
or Source View, tell the Memory Debugger to display
allocations, deallocations, or hoarded information. In
Source View, you can tell the Memory Debugger that it
should also display leaked allocations.

Figure 56: Heap Status
Preferences:

Memory Usage Page

60 Chapter 2: Using the Memory Debugger Window

Label Leaked Memory
(Graphical View) Tells the Memory Debugger to display
leaked memory in red.

Check interior pointers during leak detection.
(Source and Graphical View) Tells the Memory Debugger to
consider a block as being referenced if a pointer is
pointing anywhere within the block instead of just at
the block’s starting location. In most programs, the
code should be keeping track of the block’s boundary.
However, if your C++ program is using multiple inher-
itance, you may be pointing into the middle of the
block without knowing it.

Use this option with some caution as it can affect per-
formance.

Graphical heap display width in bytes
(Graphical View) Defines how many bytes of block mem-
ory is displayed in each line within the graphical view.
Don’t confuse this with the zoom controls. The zoom
controls increase and decrease the size the Memory
Debugger uses to display blocks. That is, zooming just
changes how much is visible at one time.

Show byte counts as megabytes (MB) or kilobytes (KB)
(all views) When selected, the Memory Debugger
chooses whether it should display memory in MB or
KB. If this is not selected, the Memory Debugger always
displays information in KB.

Memory Usage Page ___________________
The Memory Usage Page tells you how your program is using memory, and
where this memory is being used. One way to use this page is to compare
memory use over time, so that you can tell if your program is leaking mem-
ory. If a program is leaking memory, you’ll see that the amount of memory
being used steadily increases over time. You can also compare memory use
between processes, which can tell you if a process is using more memory
than you expect.

You do not need to enable memory debugging to obtain a Memory Usage View.

The Memory Debugger can present either a Process or Library View. The fol-
lowing figure shows an example of a Process View.

Clicking on a column header sorts the information from maximum to mini-
mum, or vice versa.

If you add the memory values of all columns except the last, the sum
doesn’t equal the last column’s value. There are several reasons for this.
For example, most operating systems divide segments into pages, and
information in a segment does not cross page boundaries. Another reason

Memory Usage Page

Debugging Memory Using TotalView: version 6.7 61

2. M
em

ory Tracker W
indow

is that a process could map a file or an anonymous region. Areas such as
these are part of what appear in the Stack Virtual Memory column. How-
ever, they do not appear elsewhere.

The information in these columns is as follows:

Process The name of your process.

Text The amount of memory used to store your program’s
machine code instructions.

Data The amount of memory used to store uninitialized and
initialized data.

Heap The amount of memory currently being used for data
created at run time.

Stack The amount of memory used by the currently executing
routine and all the routines in its backtrace.

If you are looking at a multi-threaded process,
TotalView only shows information for the main thread’s
stack. The stack size of some threads does not change
over time on some architectures.

On some systems, the space allocated for a thread is
considered part of the heap.

Figure 57: Memor
y Usage Page:
Process View

Memory Usage Page

62 Chapter 2: Using the Memory Debugger Window

Stack Virtual Memory
The logical size of the stack. This value is the difference
between the current value of the stack pointer and the
value reported in the Stack column. This value can dif-
fer from the size of the virtual memory mapping in
which the stack resides.

Total Virtual Memory
The sum of the sizes of the mappings in the process's
address space.

The Library Pane shows which library files are contained within your execut-
able. In addition to the same kind of information shown in the Process
View, this view shows the amount of memory used by the text and data seg-
ments of these libraries. (See the following figure.)

Figure 58: Memor
y Usage View:
Library View

Debugging Memory Using TotalView: version 6.7 63

Using the dheap
Command

3

The dheap command lets you track memory problems from within the CLI.
Although the dheap command lets you do everything that you can do using
the GUI, there are also a few things that are unique to the CLI. The follow-
ing list presents actions that you can perform in both:

To see the status of the Memory Debugger, use the dheap command.

To display information about the heap, use the dheap –info command.
You can show information for the entire heap or limit what TotalView dis-
plays to just a part of it.

To enable and disable the Memory Debugger, use the dheap –enable and
dheap –disable commands.

To start and stop error notification, use the dheap –notify and dheap
–nonotify commands.

To filter the information displayed, use the dheap –filter command.

To check for leaks, use the dheap –leaks command.

To paint memory with a bit pattern, use the dheap –paint command.

To hoard memory, use the dheap –hoard command.

There are several dheap options not yet available in the GUI.

dheap Example________________________
The following example shows the kind of information that the CLI displays
after the Memory Debugger locates an error:

d1.<> dheap
 process: Enable Notify Available
 1 (18993): yes yes yes
 1.1 realloc: Address does not match any allocated
block.: 0xbfffd87c

dheap Example

64 Chapter 3: Using the dheap Command

d1.<> dheap -info -backtrace
process 1 (18993):
 0x8049e88 -- 0x8049e98 0x10 [16]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : argz_append PC=0x401ae025 [/lib/i686/libc.so.6]
 : __newlocale PC=0x4014b3c7 [/lib/i686/libc.so.6]
 :
...
.../malloc_wrappers_dlopen.c]
 : main PC=0x080487c4 [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

 0x8049f18 -- 0x8049f3a 0x22 [34]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : main PC=0x0804883e [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

The information that is displayed in this example is explained in more
detail later in this chapter.

dheap

Debugging Memory Using TotalView: version 6.7 65

3. U
sing dheap

dheap Controls heap debugging

Format: Shows Memory Debugger state

dheap [–status]

Applies a saved configuration file

dheap –apply_config { default | filename }
Shows information about a backtrace

dheap –backtrace [subcommands]
Enables or disables the Memory Debugger

dheap { –enable | –disable }

Enables or disables event notification

dheap –event_filter subcommands
Writes memory information

dheap –export subcommands
Specifies which filters the Memory Debugger uses

dheap –filter subcommands
Enables or disables the retaining (hoarding) of freed memory blocks

dheap –hoard [subcommands]
Displays Memory Debugger information

dheap –info [subcommands]
Indicates whether an address is in a deallocated block

dheap –is_dangling address
Locates memory leaks

dheap –leaks [–check_interior]

Enables or disables Memory Debugger event notification

dheap –[no]notify

Paints memory with a distinct pattern

dheap –paint [subcommands]
Enables or disables allocation and reallocation notification

dheap –tag_alloc subcommand [start_address [end_address]]
Displays the Memory Debugger version number

dheap –version

Arguments: [–status] Displays the current state of the Memory Debugger.
This tells you if a process is capable of having its heap
operations traced and if TotalView will notify you if a
notifiable heap event occurs. If TotalView stops a
thread because one of these events occur, it displays
information about this event.

If you do not use other options to the dheap com-
mand, you can omit this option.

dheap

66 Chapter 3: Using the dheap Command

–apply_config { default | filename }
Applies configuration settings within the named file to
the Memory Debugger. If you type default, the Memory
Debugger looks first in the current directory and then in
your .totalview/hia/ directory for a file named
default.hiarc. Otherwise, it uses the name of the file
you enter here. If you do not specify an extension, the
Memory Debugger assumes that the extension is .hiarc.
That is, while you can specify a file named foo.foobar,
you cannot specify a file foo as the Memory Debugger
would then assume that the file is actually named
foo.hiarc.

–backtrace [subcommands]
Shows the current settings for the backtraces associ-
ated with a memory allocation. This information
includes the depth and the trim (described later in this
section).

–status Tells TotalView to display backtrace information. If you
do not use other backtrace options, you can omit this
option.

–set_depth depth
–reset_depth

Set or reset the depth. The depth is the maximum num-
ber of PCs that the Memory Debugger includes when it
creates a backtrace. (The backtrace is created when a
memory block is allocated or reallocated.) The depth
value starts after the trim value. That is, the number of
excluded frames does not include the trimmed frames.

When you use the –reset_depth option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

–set_trim trim
–reset_trim

Sets or resets the trim. The trim describes the number
of PCs from the top of the stack that the Memory
Debugger ignores when it creates a backtrace. As the
backtrace includes procedure calls from within the
Memory Debugger, setting a trim value removes them
from the backtrace. The default is to exclude Memory
Debugger procedures. Similarly, your program might
call the heap manager from within library code. If you
do not want to see call frames showing a library, you
can exclude them.

When you use the –reset_trim option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

–display backtrace_id
Displays the stack frames associated with the back-
trace identified by backtrace_id.

dheap

Debugging Memory Using TotalView: version 6.7 67

3. U
sing dheap

–event_filter subcommands
The subcommands to this option let you control which
agent events cause the Memory Debugger to stop pro-
gram execution.

–set { on | off }
Enables or disables event filtering. If you disable event
filtering, the Memory Debugger displays all events. If
you enable event filtering, then you can control which
events are displayed.

–reset
Resets the event filter to the Memory Debugger’s
default value. You can create your own default in a con-
figuration file or by specifying an environment variable
setting.

–[no]notify event–list
Enables or disables one or more events. The event
names you can use are:

addr_not_at_start
alloc_not_in_heap
alloc_null
alloc_returned_bad_alignment
bad_alignment_argument
dealloc_notification
double_alloc
free_not_allocated
realloc_not_allocated
realloc_notification

–export required_subcmds [optional_subcmds]
Tells the Memory Debugger to write information to a
file.

required_subcmds
You must use all three of these options with dheap
–export:

–data { alloc | alloc_leaks | dealloc | hoard | leaks }
Specifies the data to be written into the exported file,
as follows:

alloc: Show all heap allocations.

alloc_leaks: Show all heap allocations and perfrom leak
detection. This differs from the alloc argument in that
TotalView annotations leaked allocations.

dealloc: Show deallocation data.

hoard: Show deallocations currently held in the hoard.

leaks: Show heap allocations that are leaked.

–output filename
Names the file into which TotalView writes memory
information.

–view { source | backtrace }
Names the view to be exported.

dheap

68 Chapter 3: Using the dheap Command

optional_subcmds
You can use any of the following options with dheap
–export:

–set_show_backtraces { on | off }
When set to on, TotalView includes backtrace informa-
tion within the data being written. As on is the default,
you only need to use this option with the off argument.

–set_show_code { on | off }
When set to on, TotalView includes the source code for
the place where the memory was allocated with the
data being written. As on is the default, you only need
to use this option with the off argument.

–check_interior
Tells the Memory Debugger that a memory block
should not be considered as leaked if a pointer is
pointing anywhere within the block. TotalView ignores
this option unless you also use the –data leaks option.

–enable/–disable Using the –enable option tells TotalView to use the
Memory Debugger agent to record heap events the
next time you start the program. Using the –disable
option tells TotalView to not use the agent the next
time you start your program.

If necessary, you must preload the agent (see Chapter
4, “Creating Programs for Memory Debugging,” on page 83
for information) before using this option.

–filter subcommands
Use the –filter options to enable, disable, and show
information about filtering.

–enable [filter-name-list | all]
Enables filtering of dheap commands. If you do not use
an argument with this option, this option is equivalent
to selecting Enable Filtering in the Memory Debugger
Window.

If you use a filter name, you are telling the Memory
Debugger where to locate filter information. You still
need to enable filtering. For example, here is how you
would enable filtering and enable the use of a filter
named MyFilter:

dheap –filter –enable MyFilter
dheap –filter –enable

If you did not enter the second command, no filtering
occurs.

The all argument tells the Memory Debugger to enable
all of your filters.

–disable [filter-name-list | all]
Disables filtering or disables an individual filter. The way
that you use this command is similar to dheap –filter
–enable.

dheap

Debugging Memory Using TotalView: version 6.7 69

3. U
sing dheap

–list [[–full] filter-name-list]
Displays a filter description and its enabled state. If you
do not use a filter-name argument, the CLI displays all
defined filters and their enabled states.

If you include the full argument, the information
includes all of the filter’s criteria.

–hoard [subcommands]
Tells the Memory Debugger not to surrender allocated
blocks back to your program’s heap manager. If you do
not type a subcommand, the Memory Debugger dis-
plays information about the hoarded blocks. For more
information, see “Memory Reuse: dheap –hoard” on
page 75.

[–status] Displays hoard settings. Information displayed indi-
cates if hoarding is enabled, if deallocated blocks are
added to the hoard (or only those that are tagged), the
maximum size of the hoard, and the hoard’s current
size.

If you do not use other hoarding options, you can omit
the –status option when you want to see status infor-
mation.

–display [start_address [end_address]]
Displays the contents of the hoard. You can restrict the
display by specifying start_address and end_address. If you
omit end_address or use a value of 0, the Memory
Debugger displays all contents beginning at
start_address and going to the end of the hoard.

The CLI displays hoarded blocks in the order in which
your program deallocated them.

–set [on | off]
Enables and disables hoarding.

–reset Resets the Memory Debugger settings for hoarding
back to their initial value.

–set_all_deallocs [on | off]
Tells the Memory Debugger whether to hoard deallo-
cated blocks.

–reset_all_deallocs
Resets the Memory Debugger settings for hoarding of
deallocated blocks to its initial value.

–set_max_kb num_kb
Sets the maximum size of the hoarded information.

–set_max_blocks num_blocks
Set the maximum number of hoarded blocks.

–reset_max_kb
–reset_max_blocks

Resets a hoarding size value back to its default.

dheap

70 Chapter 3: Using the dheap Command

–info [subcommand]
Displays information about the heap or regions of the
heap within a range of addresses. If you do not use the
address arguments, the CLI displays information about
all heap allocations.

The information that the Memory Debugger displays
includes the start address, a block’s length, and other
information such as flags or attributes.

–backtrace
Tells the CLI to display backtrace information. This list
can be very long.

start_address
If you just type a start_address, the CLI reports on all
allocations beginning at and following this address. If
you also type an end_address, the CLI limits the display
to those allocations between the start_address and the
end_address.

end_address
If you also specify an end_address, the CLI reports on all
allocations between start_address and end_address. If you
type 0, it’s the same as omitting this argument; that is,
the Memory Debugger displays information from the
start_address to the end of the address space.

–is_dangling address
Indicates if an address that was once allocated and not
yet recycled by the heap manager is now deallocated.

–leaks Locates all memory blocks that your program allo-
cated and which are no longer referenced. That is,
using this command tells the Memory Debugger to
locate all dangling memory. For more information, see
“Detecting Leaks: dheap –leaks” on page 79.

By default, the Memory Debugger only checks to see if
the starting location of an allocated memory block is
referenced.

–check_interior
Tells the Memory Debugger to consider a memory
block as being referenced if the interior portion of it is
referenced.

–[no]notify Using the –notify option tells TotalView to stop your
program’s execution when the Memory Debugger
detects a notifiable event, and then print a message (or
display a dialog box if you are also using the GUI) that
explains what just occurred. The Memory Debugger can
notify you when heap memory errors occur or when
tagged blocks are deallocated or reallocated.

Using the –nonotify option tells TotalView not to stop
execution. Even if you type the –nonotify option,
TotalView tracks heap events.

dheap

Debugging Memory Using TotalView: version 6.7 71

3. U
sing dheap

–paint [subcommands]
Enables and disables block painting and shows status
information. (For more information on block painting,
see “Block Painting: dheap –paint” on page 79.)

[–status] Shows the current paint settings. These are either the
values you set using other painting options or their
default values.

If you do not use a subcommand to the –paint option,
the Memory Debugger shows the block painting status
information.

–set_alloc [on | off]
–set_dealloc [on | off]
–set_zalloc [on | off]

The on options enable block painting. They tell the
Memory Debugger to paint a block when your pro-
gram’s heap manager allocates, deallocates, or uses a
memory function that sets memory blocks to zero.

You can only paint zero-allocated blocks if you are also
painting regular allocations.

The off options disable block painting.

–reset_alloc
–reset_dealloc
–reset_zalloc

Reset the Memory Debugger settings for block painting
to their initial values or to values typed in a startup file.

–set_alloc_pattern pattern
–set_dealloc_pattern pattern

Set the pattern that the Memory Debugger uses the
next time it paints a block of memory. The maximum
width of pattern can differ between operating systems.
However, your pattern can be shorter.

–reset_alloc_pattern
–reset_dealloc_pattern

Reset the patterns used when the Memory Debugger
paints memory to the Memory Debugger default val-
ues.

–tag_alloc subcommand [start_address [end_address]]
Tells the Memory Debugger to mark a block so that it
can notify you when your program deallocates or real-
locates a memory block. (For more information, see
“Deallocation Notification: dheap –tag_alloc” on page 80.)

When tagging memory, if you do not specify address
arguments, the Memory Debugger either tags all allo-
cated blocks or removes the tag from all tagged blocks.

–[no]hoard_on_dealloc
Tells the Memory Debugger that it should not release
tagged memory back to your program’s heap manager
for reuse when it is deallocated—this is used in con-
junction with hoarding. To reenable memory reuse, use

dheap

72 Chapter 3: Using the dheap Command

the –nohoard_on_dealloc subcommand. See “Memory
Reuse: dheap –hoard” on page 75 for more information.

If you use this option, the memory tracker only hoards
tagged blocks. In contrast, if you use the dheap –hoard
–set_all_deallocs on command, the Memory Debugger
hoards all deallocated blocks.

–[no]notify_dealloc
–[no]notify_realloc

Enable or disable notification when your program deal-
locates or reallocates a memory block.

start_address
If you only type a start_address, the Memory Debugger
either tags or removes the tag from the block that con-
tains this address. The action it performs depends on
the subcommand you use.

end_address
If you also specify an end_address, the Memory Debugger
either tags all blocks beginning with the block contain-
ing the start_address and ending with the block contain-
ing the end_address or removes the tag. The action it
performs depends on the subcommand you use. If
end_address is 0 (zero) or you do not type an end_address,
the Memory Debugger tags or removes the tag from all
addresses beginning with start_address to the end of the
heap.

–version Displays the Memory Debugger version number.

Description: The dheap command controls the TotalView Memory Debugger. The Mem-
ory Debugger can:

Tell TotalView to use the Memory Debugger agent to track memory er-
rors.

Stop execution when a free() error occurs, and display information you
need to analyze the error. For more information, see “Notification When free
Problems Occur” on page 74.

Hoard freed memory so that it is not released to the heap manager. For
more information, see “Memory Reuse: dheap –hoard” on page 75.

Write heap information to a file. For more information, see “Writing Heap
Information: dheap –export” on page 77.

Remove unwanted information from displays. For more information, see
“Filtering Heap Information: dheap –filter” on page 77.

Detect leaked memory by analyzing if a memory block is reachable. For
more information, see “Detecting Leaks: dheap –leaks” on page 79.

Paint memory with a bit pattern when it is allocated and deallocated. For
more information, see “Block Painting: dheap –paint” on page 79.

Notify you when a memory block is deallocated or reallocated. For more
information, see “Deallocation Notification: dheap –tag_alloc” on page 80.

dheap

Debugging Memory Using TotalView: version 6.7 73

3. U
sing dheap

The first step when debugging memory problems is to type the dheap
–enable command. This command activates the Memory Debugger. You
must do this before your program begins executing. If you try to do this
after execution starts, TotalView tells you that it will enable the Memory
Debugger when you restart your program. For example:

d1.<> n
 64 > int num_reds = 15;
d1.<> dheap -enable
process 1 (30100): This will only take effect on restart

You can tell the Memory Debugger to stop execution if:

A free() problem exists by using the dheap –notify command.

A block is deallocated by using the dheap –tag_alloc –notify_dealloc
command.

A block is reallocated by using the dheap –tag_alloc –notify_realloc com-
mand.

If you enable notification, TotalView stops the process when it detects one
of these events. The Memory Debugger is always monitoring heap events,
even if you turned notification off. That is, disabling notification means that
TotalView does not stop a program when events occur. In addition, it does
not tell you that the event occurred.

While you can separately enable and disable notification in any group, pro-
cess, or thread, you probably only want to activate notification on the con-
trol group’s master process. Because this is the only process that TotalView
creates, it is the only process where TotalView can control the Memory
Debugger’s environment variable. For example, slave processes are nor-
mally created by an MPI starter process or as a result of using the fork() and
exec() functions. In these cases, TotalView simply attaches to them. For
more information, see Chapter 4, “Creating Programs for Memory Debugging,”
on page 83.

If you do not use a dheap subcommand, the CLI displays memory status
information. You only use the –status option when you want the CLI to dis-
play status information in addition to doing something else.

The information that the dheap command displays can contain a flag con-
taining additional information about the memory location. The following
table describes these flags:

Flag Value Meaning
0x0001 Operation in progress
0x0002 notify_dealloc: you will be notified if the block is deallocated
0x0004 notify_realloc: you will be notified if the block is reallocated
0x0008 paint_on_dealloc: the Memory Debugger will paint the block

when it is deallocated
0x0010 dont_free_on_dealloc: the Memory Debugger will not free

the tagged block when it is deallocated
0x0020 hoarded: the Memory Debugger is hoarding the block

dheap

74 Chapter 3: Using the dheap Command

While some dheap options obtain information on specific memory condi-
tions, you can use the following options throughout your session:

dheap or dheap –status: Displays Memory Debugger state information.
For example:
a1.<> dheap -status

process: Enable Notify Available
1 (18868): yes yes yes
2 (18947): n/a yes yes
3 (18953): n/a yes yes
4 (18956): n/a yes yes

dheap –version: Displays version information. You receive information for
each process as processes can be compiled with different versions of the
Memory Debugger. For example:
a1.<> dheap -version

process: Version
1 (18868): 1.001
2 (18947): 1.001
3 (18953): 1.001
4 (18956): 1.001

dheap –backtrace: Displays information about how much of the back-
trace is being displayed. For example:
a1.<> dheap -backtrace

process: Depth Trim
1 (18868): 32 5
2 (18947): 32 5
3 (18953): 32 5
4 (18956): 32 5

Using arguments to this command, you can change both the depth and the
trim values. Changing the depth value changes the number of stack frames
that the Memory Debugger displays in a backtrace display. Changing the
trim value eliminates the topmost stack frames.

dheap –info: Displays information about currently allocated memory
blocks. For example:
d1.<> dheap -info
process 1 (5320):

0x8049790 -- 0x804979a 0xa [10]
flags: 0x0 (none)

0x80497a0 -- 0x80497b4 0x14 [20]
flags: 0x0 (none)

0x80497b8 -- 0x80497d6 0x1e [30]
flags: 0x0 (none)

0x80497e0 -- 0x8049808 0x28 [40]
flags: 0x0 (none)

Notification When free Problems Occur
If you type dheap –enable –notify and then run your program, the Memory
Debugger notifies you if a problem occurs when your program tries to free
memory. (For more information, see Chapter 15 of the TotalView Users Guide.)

When execution stops, you can type dheap (with no arguments), to show
information about what happened. You can also use the dheap –info and
dheap –info –backtrace commands to display additional information. The

dheap

Debugging Memory Using TotalView: version 6.7 75

3. U
sing dheap

information displayed by these commands lets you locate the statement in
your program that caused the problem. For example:

d1.<> dheap
process: Enable Notify Available

1 (18993): yes yes yes
1.1 realloc: Address does not match any allocated block.:

0xbfffd87c

For each allocated region, the CLI displays the start and end address, and
the length of the region in decimal and hexadecimal formats. For example:

d1.<> dheap
process: Enable Notify Available

1 (30420): yes yes yes
1.1 free: Address is not the start of any allocated block.:

free: existing allocated block:
free: start=0x08049b00 length=(17 [0x11])
free: flags: 0x0 (none)
free: malloc PC=0x40021739 [/.../

malloc_wrappers_dlopen.c]
free: main PC=0x0804871b [../free_prob.c]
free: __libc_start_main PC=0x40140647 [/lib/i686/

libc.so.6]
free: _start PC=0x080485e1 [/.../free_prob]

free: address passed to heap manager: 0x08049b08

The Memory Debugger can also tell you when tagged blocks are deallo-
cated or reallocated. For more information, see “Deallocation Notification:
dheap –tag_alloc” on page 80.

Showing Backtrace Information: dheap –backtrace:
The backtrace associated with a memory allocation can contain many
stack frames that are part of the heap library, the Memory Debugger’s
library, and other related functions and libraries. You are not usually inter-
ested in this information, since these stack frames aren’t part of your pro-
gram. Using the –backtrace option lets you manage this information, as fol-
lows:

dheap –backtrace –set_trim value

Tells the Memory Debugger to remove—that is, trim—this number of
stack frames from the top of the backtrace. This lets you hide the stack
frames that you’re not interested in as they come from libraries.

dheap –backtrace –set_depth value

Tells the Memory Debugger to limit the number of stack frames to the
value that you type as an argument. The depth value starts after the trim
value. That is, the number of excluded frames does not include the frames
that were trimmed.

Memory Reuse: dheap –hoard
In some cases, you may not want your system’s heap manager to immedi-
ately reuse memory. You would do this, for example, when you are trying to
find problems that occur when more than one process or thread is allocat-
ing the same memory block. Hoarding allows you to temporarily delay the

dheap

76 Chapter 3: Using the dheap Command

block’s release to the heap manager. When the hoard has reached its
capacity in either size or number of blocks, the Memory Debugger releases
previously hoarded blocks back to your program’s heap manager.

The order in which the Memory Debugger releases blocks is the order in
which it hoards them. That is, the first blocks hoarded are the first blocks
released—this is a first-in, first-out (fifo) queue.

Hoarding is a two-step process, as follows:

1 Use the dheap –enable command to tell the Memory Debugger to
track heap allocations.

2 Use the dheap –hoard –set on command to tell the Memory Debugger
not to release deallocated blocks back to the heap manager. (The
dheap –hoard –set off command tells the Memory Debugger to no
longer hoard memory.) After you turn hoarding on, use the dheap
–hoard –set_all_deallocs on command to tell the Memory Debugger to
start hoarding blocks.

At any time, you can obtain the hoard’s status by typing the dheap –hoard
command. For example:

d1.<> dheap -hoard
All Max Max

process: Enabled deallocs size blocks Size Blocks
1 (10883): yes yes 16 (kb) 32 15 (kb) 9

The Enabled column contains either yes or no, which indicates whether
hoarding is enabled. The All deallocs column indicates if hoarding is occur-
ing. The next columns show the maximum size in kilobytes and number of
blocks to which the hoard can grow. The last two columns show the current
size of the hoard, again, in kilobytes and the number of blocks.

As your program executes, the Memory Debugger adds the deallocated
region to a FIFO buffer. Depending on your program’s use of the heap, the
hoard could become quite large. You can control the hoard’s size by setting
the maximum amount of memory in kilobytes that the Memory Debugger
can hoard and the maximum number of hoarded blocks.

dheap –hoard –set_max_kb num_kb
Sets the maximum size in kilobytes to which the hoard
is allowed to grow. The default value on many operating
systems is 32KB.

dheap –hoard –set_max_blocks num_blocks
Sets the maximum number of blocks that the hoard
can contain.

You can tell which blocks are in the hoard by typing the dheap –hoard
–display command. For example:

d1.<> dheap -hoard -display
process 1 (10883):

0x804cdb0 -- 0x804d3b0 0x600 [1536]
flags: 0x32 (hoarded)

dheap

Debugging Memory Using TotalView: version 6.7 77

3. U
sing dheap

0x804d3b8 -- 0x804dab8 0x700 [1792]
flags: 0x32 (hoarded)

0x804dac0 -- 0x804e2c0 0x800 [2048]
flags: 0x32 (hoarded)

0x804fce8 -- 0x804fee8 0x200 [512]
flags: 0x32 (hoarded)

0x804fef0 -- 0x80502f0 0x400 [1024]
flags: 0x32 (hoarded)

Writing Heap Information: dheap –export
You may want to write the information that the Memory Debugger collects
about your program to disk so that you can examine it at a later time. Or,
you may want to save information from different sessions so that you can
compare changes that you’ve made.

You can save Memory Debugger information by using the dheap –export
command. This command has two sets of options: one contain options
you must specify, the other contains options that are optional. In all cases,
you must use the:

–output option to name the file to which the Memory Debugger writes
information.

–view option to indicate if you want either a source or backtrace view.

–data option to name which data is included.

For example:

dheap –export –output heap.txt –view source –data leaks

You can also add –set_show_code and –set_show_backtraces. These
options are most often used to restrict the amount of information being
displayed. You can also use the –check_interior option to tell the Memory
Debugger that if a pointer is pointing into a block instead of at the block’s
beginning, then the block shouldn’t be considered as being leaked.

Filtering Heap Information: dheap –filter
Depending upon the way in which your program manages memory, the
Memory Debugger might be managing a lot of information. You can filter
this information down to focus on things that are important to you at the
moment by using filters. These filters can only be created using the GUI.
However, after you create a filter using the GUI, you can apply it from within
the CLI by using the dheap –filter commands.

Here is an excerpt from a CLI interaction:

d1.<> dheap -filter -list
Filtering of heap reports is 'disabled'
Individual filters are set as follows:

Disabled MyFilter Function contains strdup

d1.<> dheap -filter -enable MyFilter
d1.<> dheap -filter -enable
d1.<> dheap -filter -list
Filtering of heap reports is 'enabled'
Individual filters are set as follows:

dheap

78 Chapter 3: Using the dheap Command

Enabled MyFilter Function contains strdup

d1.<>

Notice that TotalView automatically knew about your filters. That is, it
always reads your filter file. However, TotalView ignores the file until you
both enable the file and enable filtering. That is, while the following two
commands look about the same, they are different:

dheap -filter -enable MyFilter
dheap -filter -enable

The first command tells the Memory Debugger that it could use the infor-
mation contained within the MyFilter filter. However, the Memory Debugger
only uses it after you enter the second command.

Checking for Dangling Pointers: dheap –is_dangling:
The dheap –is_dangling command lets you determine if a pointer is still
pointing into a deallocated memory block.

You can also use the dheap –is_dangling command to determine if an
address refers to a block that was once allocated but has not yet been
recycled. That is, this command lets you know if a pointer is pointing into
deallocated memory.

Here’s a small program that illustrates a dangling pointer:

main(int argc, char **argv)
{

int *addr = 0; /* Pointer to start of block. */
int *misaddr = 0; /* Pointer to interior of block. */

addr = (int *) malloc (10 * sizeof(int));
 /* Point to interior of the block. */

misaddr = addr + 5;

/* addr and misaddr now dangling. */
free (addr);
printf ("addr=%lx, misaddr=%lx\n",

(long) addr, (long) misaddr);
}

If you set a breakpoint on the printf() statement and probe the addresses
of addr and misaddr, the CLI displays the following:

d1.<> dheap -is_dangling 0x80496d0
process: 0x80496d0

1 (19405): dangling

d1.<> dheap -is_dangling 0x80496e4
process: 0x80496e4

1 (19405): dangling interior

This example is contrived. When creating this example, the variables were
examined for their address and their addresses were used as arguments. In
a realistic program, you’d find the memory block referenced by a pointer
and then use that value. In this case, because it is so simple, using the CLI
dprint command gives you the information you need. For example:

dheap

Debugging Memory Using TotalView: version 6.7 79

3. U
sing dheap

d1.<> dprint addr
 addr = 0x080496d0 (Dangling) -> 0x00000000 (0)
d1.<> dprint misaddr
 misaddr = 0x080496e4 (Dangling Interior) -> 0x00000000 (0)

If a pointer is pointing into memory that is deallocated, and this memory is
being hoarded, the CLI also lets you know that you are looking at hoarded
memory.

Detecting Leaks: dheap –leaks
The dheap –leaks command locates memory blocks that were allocated
and are no longer referenced. It then displays a report that describes these
blocks; for example:

d1.<> dheap -leaks
process 1 (32188): total count 9, total bytes 450
* leak 1 -- total count 9 (100.00%), total bytes 450 (100%)

-- smallest / largest / average leak: 10 / 90 / 50
: malloc PC=0x40021739 [/.../malloc_wrappers_dlopn.c]
: main PC=0x0804851e [/.../local_leak.cxx]
: __libc_start_main PC=0x40055647 [/lib/i686/libc.so.6]
: _start PC=0x080483f1 [/.../local_leak]

If you use the –check_interior option, the Memory Debugger considers a
block as being referenced if a pointer exists to memory inside the block.

In addition to providing backtrace information, the CLI:

Consolidates leaks made by one program statement into one leak re-
port. For example, leak 1 has nine instances.

Reports the amount of memory consumed for a group of leaks. It also tells
you what percentage of leaked memory this one group of memory is using.

Indicates the smallest and largest leak size, as well as telling you what
the average leak size is for a group.

You might want to paint a memory block when it is deallocated so that you
can recognize that the data pointed to is out-of-date. Tagging the block so
that you can be notified when it is deallocated is another way to locate the
source of problems.

Block Painting: dheap –paint
When your program allocates or deallocates a block, the Memory Debugger
can paint the block with a bit pattern. This makes it easy to identify unini-
tialized blocks, or blocks pointed to by dangling pointers.

Here are the commands that enable block painting:

dheap –paint –set_alloc on
dheap –paint –set_dealloc on
dheap –paint –set_zalloc on

Use the dheap –paint command to check the kind of painting that occurs
and what the current painting pattern is. For example:

dheap

80 Chapter 3: Using the dheap Command

d1.<> dheap -paint
Alloc Dealloc

process: Alloc Dealloc AllocZero pattern pattern
1 (1012): yes yes no 0xa110ca7f 0xdea110cf

Some heap allocation routines such as calloc() return memory initialized to
zero. Using the –set_zalloc_on command allows you to separately enable
the painting of the memory blocks altered by these kinds of routines. If you
do enable painting for routines that set memory to zero, the Memory
Debugger uses the same pattern that it uses for a normal allocation.

Here’s an example of painted memory:

d1.<> dprint *(red_balls)
 *(red_balls) = {

value = 0xa110ca7f (-1592735105)
x = -2.05181867705792e-149
y = -2.05181867705792e-149
spare = 0xa110ca7f (-1592735105)
colour = 0xa110ca7f -> <Bad address: 0xa110ca7f>

}

The 0xall0ca7f allocation pattern resembles the word “allocate”. Similarly,
the 0xdea110cf deallocation pattern resembles “deallocate”.

Notice that all of the values in the red_balls structure in this example aren’t
set to 0xall0ca7f. This is because the amount of memory used by elements
of the variable use more bits than the 0xall0ca7f bit pattern. The following
two CLI statements show the result of printing the x variable, and then
casting it into an array of two integers:

d1.<> dprint (red_balls)->x
 (red_balls)->x = -2.05181867705792e-149
d1.<> dprint {*(int[2]*)&(red_balls)->x}
 (int[2])&(red_balls)->x = {
 [0] = 0xa110ca7f (-1592735105)
 [1] = 0xa110ca7f (-1592735105)

(Diving in the GUI is much easier.)

You can tell the Memory Debugger to use a different pattern by using the
following two commands:

dheap –paint –set_alloc_pattern pattern

dheap –paint –set_dealloc_pattern pattern

Deallocation Notification: dheap –tag_alloc
You can tell the Memory Debugger to tag information within the Memory
Debugger’s tables and to notify you when your program either frees a block
or passes it to realloc() by using the following two commands:

dheap –tag_alloc –notify_dealloc

dheap –tag_alloc –notify_realloc

Tagging is done within the Memory Debugger’s agent. It tells the Memory
Debugger to watch those memory blocks. Arguments to these commands
tell the Memory Debugger which blocks to tag. If you do not type address
arguments, TotalView notifies you when your program frees or reallocates

dheap

Debugging Memory Using TotalView: version 6.7 81

3. U
sing dheap

an allocated block. The following example shows how to tag a block and
how to see that a block is tagged:

d1.<> dheap -tag_alloc -notify_dealloc 0x8049a48
process 1 (19387): 1 record(s) update
d1.<> dheap -info
process 1 (19387):

0x8049a48 -- 0x8049b48 0x100 [256]
flags: 0x2 (notify_dealloc)

0x8049b50 -- 0x8049d50 0x200 [512]
flags: 0x0 (none)

0x8049d58 -- 0x804a058 0x300 [768]
flags: 0x0 (none)

Using the –notify_dealloc subcommand tells the Memory Debugger to let
you know when a memory block is freed or when realloc() is called with its
length set to zero. If you want notification when other values are passed to
the realloc() function, use the –notify_realloc subcommand.

After execution stops, here is what the CLI displays when you type another
dheap –info command:

d1.<> dheap -info
process 1 (19387):

0x8049a48 -- 0x8049b48 0x100 [256]
flags: 0x3 (notify_dealloc, op_in_progress)

0x8049b50 -- 0x8049d50 0x200 [512]
flags: 0x0 (none)

0x8049d58 -- 0x804a058 0x300 [768]

TV_HEAP_ARGS

82 Chapter 3: Using the dheap Command

TV_HEAP_ARGS Environment variable for presetting Memory Debugger values

When you start TotalView, it looks for the TV_HEAP_ARGS environment vari-
able. If it exists, TotalView reads values placed in it. If one of these values
changes a Memory Debugger default value, the Memory Debugger uses this
value as the default.

If you select a <Default> button in the GUI or a reset option in the CLI, the
Memory Debugger resets the value to the one you set here, rather than to
its default.

TV_HEAP_ARGS
Values

The values that you can enter into this variable are as follows:

display_allocations_on_exit
Tells the Memory Debugger to dump the allocation
table when your program exits. If your program ends
because it received a signal, the Memory Debugger
might not be able to dump this table.

backtrace_depth depth
Sets the backtrace depth value. See “Showing Backtrace
Information: dheap –backtrace:” on page 75 for more infor-
mation.

backtrace_trim trim
Sets the backtrace trim value. See “Showing Backtrace
Information: dheap –backtrace:” on page 75 for more infor-
mation.

memalign_strict_alignment_even_multiple
The Memory Debugger provides an integral multiple of
the alignment rather than the even multiple described
in the Sun memalign documentation. By including this
value, you are telling the Memory Debugger to use the
Sun alignment definition. However, your results might
be inconsistent if you do this.

output fd int
output file pathname

Sends output from the Memory Debugger to the file
descriptor or file that you name.

verbosity int Sets the Memory Debugger’s verbosity level. If the level
is greater than 0, the Memory Debugger sends informa-
tion to stderr. The values you can set are:

0: Display no information. This is the default.

1: Print error messages.

2: Print all relevant information.

This option is most often used when debugging Mem-
ory Debugger problems. Setting the TotalView VERBOSE
CLI variable does about the same thing.

Example: When you are entering more than one value, separate entries with spaces.
For example:

setenv TV_HEAP_ARGS output file “my_file backtrace_depth 16”

Memory Debugging Using TotalView: version 6.7 83

Creating Programs
for Memory
Debugging

4

The TotalView Memory Debugger puts its heap agent between your
program and its heap library. This allows the agent to intercept the
calls that your program makes to this library. After it intercepts the
call, it checks it for errors, and then sends it on to the library so that
it can be processed. The Memory Debugger agent does not replace
standard memory functions; it just monitors what they do. For more
information, see “Behind the Scenes” on page 5.

You can incorporate the agent into your environment either by:

Linking your application with the agent.
Requesting that the agent’s library be preloaded by setting a run-
time loader environment variable. This is only done when your
program will attach to another program that it did not start and
you want the Memory Debugger to locate problems in this second
application.

AIX applications differ from applications running on other platforms
as AIX does not support interposition. However, TotalView can
replace the AIX heap library.

Topics in this chapter are:

“Linking Your Application With the Agent” on page 83
“Attaching to Programs” on page 85
“Using the Memory Debugger” on page 86
“Installing tvheap_mr.a on AIX” on page 88

Linking Your Application With the Agent
In some situations, you need to explicitly link the Memory Debugger’s
agent directly to your program. For example, if you are debugging an MPI
program, your starter program might not propagate environment variables.

Linking Your Application With the Agent

84 Chapter 4: Creating Programs for Memory Debugging

On AIX, you must always link your program so that malloc() can find the heap
replacement and agent. In addition, you only set your LIBPATH environment variable
when the tvheap_mr.a library is in your LIBPATH. If it isn’t, your program might not
load. You must use the –L options listed in the following table.

The following table lists additional linker command-line options that you
must use when you link your program:

The following list describes the options in this table:

path The absolute path to the agent in the TotalView instal-
lation hierarchy. More precisely, this directory is:

installdir/toolworks/totalview.version/platform/lib

installdir
The installation base directory name.

version The TotalView version number.

platform The platform tag.

path_mr The absolute path of the heap replacement library. This
value is determined by the person who installs the
TotalView malloc replacement library.

Platform Compiler ABI Additional linker options
HP Tru64 Alpha
(version 5)

Compaq/KCC 64 –Lpath –ltvheap –rpath path
GCC 64 –Lpath –ltvheap –Wl,–rpath,path

IBM RS/6000
(all)

IBM/GCC
KCC

32/64
32
64

–Lpath_mr –Lpath
–Lpath_mr –Lpath --static_libKCC
–Lpath_mr –Lpath

AIX 4 IBM/KCC 32 –Lpath_mr –Lpath path/aix_malloctype.so \
–binitfini:aix_malloctype_init

64 –Lpath_mr –Lpath path/aix_malloctype64_4.so \
–binitfini:aix_malloctype_init

GCC 32 –Lpath_mr –Lpath \
path/aix_malloctype.so –Wl, –binitfini:aix_malloctype_init

64 –Lpath_mr –Lpath \
path/aix_malloctype64_4.so –Wl, –binitfini:aix_malloctype_init

AIX 5 IBM/GCC/KCC 32 –Lpath_mr –Lpath path/aix_malloctype.o

64 –Lpath_mr –Lpath path/aix_malloctype64_5.o

Linux x86 GCC/Intel/PGI 32 –Lpath –ltvheap –Wl,–rpath,path

KCC 32 –Lpath –ltvheap –rpath path
Linux x86-64 GCC/PGI 32 –Lpath –ltvheap –Wl,–rpath,path

64 –Lpath –ltvheap_64 –Wl,–rpath,path

Linux IA64 GCC/Intel 64 –Lpath –ltvheap –Wl,–rpath,path

SGI SGI/GCC/KCC 32 –Lpath –ltvheap –rpath path

64 –Lpath –ltvheap_64 –rpath path
Sun Sun/KCC/

Apogee
32 –Lpath –ltvheap –R path

Sun/KCC 64 –Lpath –ltvheap_64 –R path
GCC 32 –Lpath –ltvheap –Wl,–R,path

64 –Lpath –ltvheap_64 –Wl,–R,path

Attaching to Programs

Memory Debugging Using TotalView: version 6.7 85

4. C
reating Program

s

Since it is easy to misinterpret the path specifications, you may want to see
what value TotalView uses when it sets a path. Here’s the procedure:

1 Start TotalView.
2 Enable the Memory Debugger by selecting the Tools > Memory Debugger

command, and then checking the Enable memory debugging checkbox.
3 Select the Process > Startup Parameters command and then select the

Environment Page. Type a value that is the same as or similar to the one
in the following figure:

Attaching to Programs
When your program attaches to a process that is already running, the
Memory debugger can not locate heap problems in that process unless you
manually set a Memory Debugger environment variable. The variable that
you use must be unique (or relatively so) on each platform. The following
table lists these variables:

You can display the value that TotalView uses by displaying the
Environment Page within the Process > Startup Parameters command. To
set this variable:

1 Start TotalView and enable memory debugging.
2 Open this dialog box and see what the value is for your environment.
3 Close TotalView.

Platform Variable
HP Tru64 Alpha _RLD_LIST
IBM AIX MALLOCTYPE
Linux IA64 and x86 LD_PRELOAD
SGI Irix __RLDN32_LIST

_RLD64_LIST
Sun LD_PRELOAD

Using the Memory Debugger

86 Chapter 4: Creating Programs for Memory Debugging

4 Start the program to which you will be attaching as an argument to the
env command. For example, here’s how to set this variable on AIX:
env MALLOCTYPE user:tvheap_mr.a totalview my_prog

Do not set these environment variables so that the agent interposes itself when you exe-
cute any command. For example, use env to set this variable and run TotalView rather
than setenv. If you use setenv, you will run the agent against all your programs,
including system programs such as ls.

Using the Memory Debugger ___________
This section describes using the Memory Debugger in various environ-
ments. This section describes the following environments and platforms:

MPICH
IBM PE
SGI MPI
RMS MPI

MPICH You use the Memory Debugger with MPICH MPI codes as follows. (Etnus
has tested this only on Linux x86.)

1 You must link your parallel application with the Memory Debugger’s
agent, as described in “Linking Your Application With the Agent” on page 83.
On most Linux x86 systems, type:
mpicc -g test.o -o test -Lpath -ltvheap -Wl,-rpath,path

2 Start TotalView using the –tv command-line option to the mpirun script in
the usual way; for example:
mpirun -tv mpirun-args test args
TotalView starts up on the rank 0 process.
Because you linked in the Memory Debugger’s agent, memory debugging
is automatically selected in your rank 0 process.

3 If you need to, configure the Memory Debugger.
4 Run the rank 0 process.

IBM PE You can use the Memory Debugger with IBM PE MPI codes.There are two
alternatives.

You will not be able to install tvheap_mr.a under AIX on your target system unless you
have installed the bos.adt.syscalls package, which is part of the System Calls Applica-
tion Development Toolkit.

The first is to place the following proc in your .tvdrc file:

Automatically enable memory error notifications
(without enabling memory debugging) for poe programs.
proc enable_mem {loaded_id} {

set mem_prog poe
set executable_name [TV::image get $loaded_id name]
set file_component [file tail $executable_name]

Using the Memory Debugger

Memory Debugging Using TotalView: version 6.7 87

4. C
reating Program

s

if {[string compare $file_component $mem_prog] == 0} {
puts "Enabling Memory Debugger for $file_component”
dheap -notify

}
}

Append this proc to the TotalView image load callbacks
so that it runs this macro automatically.
dlappend TV::image_load_callbacks enable_mem

Here’s the second method:

1 You must prepare your parallel application to use the Memory Debugger’s
agent, as described in “Linking Your Application With the Agent” on page 83
and “Installing tvheap_mr.a on AIX” on page 88. Here is an example that usu-
ally works:
mpcc_r -g test.o -o test -Lpath_mr -Lpath \

path/aix_malloctype.o
“Installing tvheap_mr.a on AIX” on page 88 contains additional information.

2 Start TotalView on poe in the usual way:
totalview poe -a test args

Because tvheap_mr.a is not in poe’s LIBPATH, enabling the Memory Debugger on
the poe process causes problems because poe cannot locate the tvheap_mr.a malloc
replacement library.

3 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), use the CLI to turn on notification, as fol-
lows:

Open a CLI window by selecting the Tools > Command Line command
from the Process Window showing poe.
In a CLI window, enter the dheap –notify command. This command
turns on notification in the poe process. The MPI processes to which
TotalView attaches inherit notification.

4 Run the poe process.

SGI MPI There are two ways to use the Memory Debugger on SGI MPI code. In most
cases, all you need do is select the Tools > Memory Debugging command,
select the mpirun process in the Process Set area, and then check the
Enable memory debugging check box on the mpirun process. Occasionally,
this can cause a problem. If it does, here’s what you should do:

1 Link your parallel application with the Memory Debugger’s agent, as
described in the Debugging Memory Problems chapter of the TotalView Users
Guide. Basically, the command you will enter is:
cc -n32 -g test.o -Lpath -ltvheap -rpath path \

-lmpi -o test
2 Start TotalView on the mpirun process. For example:
totalview mpirun -a mpirun-args test args

3 If you need to, configure the Memory Debugger.
4 Run the mpirun process.

Installing tvheap_mr.a on AIX

88 Chapter 4: Creating Programs for Memory Debugging

RMS MPI Here's how to use the Memory Debugger with Quadrics RMS MPI codes.
(Etnus has tested this only on Linux x86.)

1 You do not need to link the application with the Memory Debugger
because the prun process propagates environment variables to the rank
processes. However, if you’d like to link the application with the Memory
Debugger’s agent, you can.

2 Start TotalView on prun; for example:
totalview prun -a prun-args test args

3 Enable memory debugging by selecting the Tools > Memory Debugging
command, selecting the mpirun process in the Process Set area, and then
checking the Enable memory debugging check box. If you had linked in
the agent, this option is automatically selected.

4 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), check the Stop execution when an
allocation or deallocaction error occurs check box.

5 Run the prun process.

Installing tvheap_mr.a on AIX ___________
You must install the tvheap_mr.a library on each node upon which you will
be running the Memory Debugger agent. One way to do this is to place a
symbolic link in /usr/lib that points to the tvheap_mr.a library. If you do this,
you do not need to add special –L command-line options to your build. In
addition, there are no special requirements when using poe.

The rest of this section describes what you need to do if you cannot create
symbolic links. Even when you create symbolic links, you will still need to
recreate tvheap_mr.a whenever libc.a changes.

The aix_install_ tvheap_mr.sh script contains most of what you need to do.
This script is in the following directory:

toolworks/totalview.version/rs6000/lib/

For example, after you become root, enter the following commands:

cd toolworks/totalview.6.3.0-0/rs6000/lib
mkdir /usr/local/tvheap_mr
./aix_install_tvheap_mr.sh ./tvheap_mr.tar /usr/local/tvheap_mr

Use poe to create tvheap_mr.a on multiple nodes.

The pathname for the tvheap_mr.a library must be the same on each node.
This means that you cannot install this library on a shared file system.
Instead, you must install it on a file system that is private to the node. For
example, because /usr/local is usually only accessible from the node upon
which it is installed, you might want to install it there.

The tvheap_mr.a library depends heavily on the exact version of libc.a that
is installed on a node. If libc.a changes, you must recreate tvheap_mr.a by
re-executing the aix_install_tvheap_mr.sh script.

Installing tvheap_mr.a on AIX

Memory Debugging Using TotalView: version 6.7 89

4. C
reating Program

s

LIBPATH and
Linking

This section discusses compiling and linking your AIX programs. The fol-
lowing command adds path_mr and path to your program’s default
LIBPATH:

xlc -Lpath_mr -Lpath -o a.out foo.o

When malloc() dynamically loads tvheap_mr.a, it should find the library in
path_mr. When tvheap_mr.a dynamically loads tvheap.a, it should find it in
path.

The AIX linker allows you to relink executables. This means that you can
make an already complete application ready for the Memory Debugger’s
agent; for example:

cc a.out -Lpath_mr -Lpath -o a.out.new

Here's an example that does not link in the heap replacement library.
Instead, it allows you to dynamically set MALLOCTYPE:

xlC -q32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o -o prog

The next example shows how you allow your program to access the Mem-
ory Debugger’s agent by linking in the aix_malloctype.o module:

xlc -q32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o \

/home/totalview/interposition/lib/aix_malloctype.o \
-o prog

You can check that the paths made it into the executable by running the
dump command; for example:

% dump -Xany -Hv tx_memdebug_hello

tx_memdebug_hello:

 Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000001f 0x00000040 0x000000d3

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000005 0x00000608 0x00000080 0x000006db

Import File Strings
INDEX PATH BASE MEMBER
0 /.../interpos/lib:/usr/.../lib:/usr/lib:/lib
1 libc.a shr.o
2 libC.a shr.o
3 libpthreads.a shr_comm.o
4 libpthreads.a shr_xpg5.o

Index 0 in the Import File Strings section shows that the search path the
runtime loader uses when it dynamically loads a library. Some MPI systems
propagate the preload library environment to the processes they will run;

Installing tvheap_mr.a on AIX

90 Chapter 4: Creating Programs for Memory Debugging

others, do not. If they do not, you need to manually link them with the
tvheap library.

In some circumstances, you might want to link your program instead of set-
ting the MALLOCTYPE environment variable. If you set the MALLOCTYPE
environment variable for your program and it fork/execs a program that is
not linked with the agent, your program will terminate because it fails to
find malloc().

Using the TVHEAP_ARGS Variable
The values set within the TV_HEAP_ARGS environment variable allow you to
control some of the Memory Tracker’s behavior. Here are its arguments:

backtrace_depth The maximum number of stack frames that the agent
will record. The default is 32.

backtrace_trim The number of frames to discard from the top of the
stack. These frames are normally part of the Memory
Tracker. The default is 5.

display_allocations_on_exit
Dumps a list of allocations that weren’t freed when
your program terminated.

output {fd fd-number | file pathname }
Directs output to either a file descriptor or to a file. If
you do not use this argument, the default is to send
output to fd 2, which is stderr.

verbosity level Sets the verbosity level. If you do not use this argu-
ment, the default is 0 (zero). Here is what you can en-
ter:

0 No messages

1 Writes Starting and Finishing messages. This lets
you know that the agent is present.

2 Writes event information as well as the breakpoint rou-
tine being called.

For example, you could set this variable as follows:

setenv TV_HEAP_ARGS "verbosity 2 output file foo.txt"

Installing tvheap_mr.a on AIX

Memory Debugging Using TotalView: version 6.7 91

4. C
reating Program

s

Installing tvheap_mr.a on AIX

92 Chapter 4: Creating Programs for Memory Debugging

Debugging Memory Problems Using TotalView: version 6.7 93

Index

Symbols
<pending> pattern 48
__RLDN32_LIST heap de-

bugging environ-
ment variable 85

_RLD_LIST heap debugging
environment vari-
able 85

_RLD64_LIST heap debug-
ging environment
variable 85

Numerics
0xa110ca7f allocation pat-

tern 31
0xa110ca7f bit pattern 80
0xdea110cf bit pattern 80
0xdea110cf deallocation

pattern 31

A
Add Filter dialog box 39
adding and editing 39
adding filters 38, 39
Address not at start of

block problems 13
agent’s shared library 6
aix_install_ tvheap_mr.sh

script 88
Allocate Paint Pattern dia-

log box 48
allocated blocks

seeing 74
allocation

0xa110ca7f pattern 31
block painting 2

allocation focus 40
allocation location 19
allocation pattern 80
allocation point 47
analyzing memory 60

Apply pattern to alloca-
tions check box 49

Apply pattern to dealloca-
tions check box 49

Apply pattern to zero ini-
tialized allocations
check box 49

Apply Settings 51
attaching to programs 85
automatic variables 9

B
backtrace

deallocation 18
backtrace ID 55
–backtrace option 74, 75
Backtrace pane 53
Backtrace View 55, 56
backtrace_depth TV_

HEAP_ARGS value 82
backtrace_trim TV_HEAP_

ARGS value 82
backtraces 18, 25, 47, 53,

55, 75
depth 74
setting depth 75
setting trim 75
trim 74
which displayed 25

bit painting
0xa110ca7f 31
0xdea110cf 31
multiple precision 32

bit pattern 47
in Variable Window 2
writing 2

bit patterns
writing 26

block information 47
Block information area 18
block length

Graphical view 58
block painting 2, 16, 26

defined 2
Block Properties com-

mand 23
Block Properties Window

23
blocks, displaying 29
breakpoints

internal 18
bss data error 20

C
calloc() 47
changing filter order 39
Check interior pointers

during leak detec-
tion preference 54,
56, 60

–check_interior option 79
checking for problems 2
CLI commands

dheap 63, 65
columns

hiding 37
order 37
resizing 37
sorting 38

commands
Process > Startup Pa-

rameters 85
Tools > Memory Event

Details 18
concealed allocation 14
Configuration page 16, 27,

35, 36, 44
current settings tab 44

criteria 40
adding to filter 39
backtrace entries 41
changing order 40

D

94 Index

exclusion 40
matching 40
operators 41
property 41
removing 39
value 41

custody changes 15

D
dangling interior pointer 78
dangling pointer problems

26
dangling pointers 2, 78

example 27
dangling pointers and leaks

compared 12
data section 5, 8
data segment memory 61
Data to Display preference

59
deallocate

defined 8
deallocation

0xdea110cf pattern 31
block painting 2

deallocation backtrace 18
deallocation checkbox 24
deallocation location 19
deallocation pattern 80
deallocation point 47
deallocations, tracking 24
depth, backtraces 75
dheap

–disable 63
–enable 63
example 63
–filter 63
–hoard 63
–info 63
–leaks 63
–nonotify 63
–notify 63
–paint 63
status of Memory

Tracker 63
dheap command 63, 65
dheap –export command

77
data option 77
output option 77
set show_backtraces

option 77
set_show_code option

77
view option 77

dheap –filter command 77
enable filtering 77
enabling a filter 77

disabling all filters 39

disabling while running er-
ror 45

display_allocations_on_
exit TV_HEAP_ARGS
value 82

displaying block proper-
ties 23

displaying blocks 29
dont_free_on_dealloc flag

73
double free error 22
dynamically allocate space

12

E
editing filters 38, 39
Enable memory debugging

45
Enable Memory Debugging

check box 16
enabling

Memory Tracker 17
enabling all filters 39
enabling filtering 37
enabling filters 38
enabling Memory Debug-

ger 24
enabling while running er-

ror 45
environment variables

TV_HEAP_ARGS 82
events, setting 45
examining memory 28

F
fifo hoard queue 76
filtering 38

enabling 37
filtering heap information

77
filtering, enabling 38
filters 39

adding 38
adding criteria 39
allocation focus 40
backtrace entries 41
changing criteria order

40
criteria 39
criteria operators 41
criteria properties 41
criteria values 41
disabling all 39
editing 38
enabling all 39
exclusion 40
managing 38
matching criteria 40
naming 39
ordering 39
removing 38

removing criteria 39
sharing 39

finding deallocation prob-
lems 13

finding memory leaks 24
flag

hoarded 73
flags 73

dont_free_on_dealloc
73

notifiy_dealloc 73
notifiy_realloc 73
paint_on_dealloc 73

Fortran
tracking memory 6

frames
eliminating 74

free not allocated prob-
lems 13

free problems 2, 74
finding 17

freeing bss data error 20
freeing data section mem-

ory error 20
freeing freed memory 20
freeing memory that is al-

ready freed error 20
freeing stack memory error

20
freeing the wrong address

21
freeing the wrong address

error 21
freeing unallocated space

19

G
Generate View 36
Generate View button 35
Get Current Settings 50
Graphical heap display

width in bytes prefer-
ence 60

Graphical View 29, 30
Graphical view 57, 58

H
header section 5
heap

defined 12
heap API problems 74
heap debugging 17

agent linking 83
attaching to programs

85
backtraces 70
enabling 17
enabling notification

73
environment variable

85

M

Debugging Memory Problems Using TotalView: version 6.7 95

freeing bss data 20
freeing data section

memory error 20
freeing memory that is

already freed er-
ror 20

freeing stack memory
error 20

freeing the wrong ad-
dress 21

freeing unallocated
space 19

functions tracked 17
IBM PE 86
incorporating agent 83
interposition defined 5
LIBPATH environment

variable 84
linker command-line

options 84
linking 15, 83
linking the agent 83
monitoring events 73
MPICH 86
preloading 6
realloc problems 21
RMS MPI 88
setting environment

variable 85
SGI MPI 87
starting 17
stopping 17
stopping on memory

error 18
tvheap_mr.a

library 88
using 18

heap displays, simplifying
77

heap information
filtering 77

Heap Information page 58
heap information, saving

77
heap library functions 5
heap memory 61
Heap Status

Backtrace view 56
Graphical view 57, 58
Source view 56

Heap Status Graphical
View 29, 30

Heap Status page 56
Hide Backtrace Informa-

tion button 23
hiding columns 37
hoard capacity 76
Hoard Memory on deallo-

cation check box 50
–hoard option 75

hoarded flag 73
hoarding 17, 26, 32, 49, 75

block maximum 76
defined 2
enabling 76
finding a multithread-

ing problem 33
finding dangling point-

er references 33
KB size 76
size of hoard 50
status 76

I
–info option 74
internal breakpoint 18
interposition defined 5
–is_dangling option 78

L
Label Leaked Memory pref-

erence 60
LD_PRELOAD heap debug-

ging environment
variable 85

leak consolidation 79
leak detection 79

checking interior 79
Leak Detection page 12, 25
leaks

concealed ownership
14

custody changes 15
defined 2
listing 2
orphaned ownership

14
underwritten destruc-

tors
leaks 15

why they occur 13
leaks and dangling pointers

compared 12
–leaks option 79
LIBPATH and linking 89
Library View

Memory Usage page 60
line number 25
linking 4
linking the Memory Track-

er agent 83
linking with the Memory

Debugger 15
listing leaks 2
Load 51
load file 4
Log all allocations on exit

50
Log Memory Debug Infor-

mation 50

M
machine code section 5
MALLOCTYPE heap debug-

ging environment
variable 85, 89

managing filters 38
Maximum blocks to hoard

field 50
Maximum KB to hoard field

50
memalign_strict_

alignment_even_
multiple TV_HEAP_
ARGS value 82

memory
analyzing 60
data segment 61
examining 28
heap 61
maps 3
pages 3
stack 61
text segment 61
total virtual memory 62
virtual stack 62

memory block painting 16
Memory Block Properties

window 47
Memory Blocks pane 52
Memory Debugger

enabling 24
functions tracked 5
linking with 15
preferences 36
using 15

Memory Debugging Com-
mand 5

Memory Debugging Data
Filters Dialog Box 39

memory error notification
16

Memory Event Details
command 47

Memory Event Details
command. 19

Memory Event Details Win-
dow 18, 24

Block information area
18

Point of Allocation tab
18

Point of Deallocation
tab 18

Memory Event Details win-
dow 46

memory hoarding 17
Memory Usage page 5, 60
memory, reusing 75
MPICH

and heap debugging 86

N

96 Index

N
notification 15, 16, 18, 45,

74
disabling 73
enabling 73
not notifying 17

–notify option 74
Notify when deallocated

check box 24
notify_dealloc flag 73
notify_realloc flag 73

O
order of columns 37
orphaned ownership 14
output file for views 43
output TV_HEAP_ARGS

value 82

P
–paint option 79
paint_on_dealloc flag 73
painting 47, 79

allocation pattern 80
deallocation pattern 80
enabling 79
zero allocation 80

painting blocks 2
painting deallocated mem-

ory 33
pattern

<pending> 48
Pattern for allocations 47
Pattern for deallocations

field 49
PC, setting 13
Point of Allocation page 47
Point of Allocation tab 18
Point of Deallocation page

47
Point of Deallocation tab

18
pointers

dangling 2
passing 10
realloc problem 13

preferences 36
Heap Status

preferences 59
preloading Memory Debug-

ger agent 6
Process > Startup Parame-

ters command 85
Process Set area 25
Process Set selection 35
Process View

Memory Usage page 60
processes

limiting selection 36,
52

program
mapping to disk 3

programs
compiling 4

R
reachable blocks 79
realloc

pointer problem 13
realloc errors 21
realloc not allocated prob-

lems 13
realloc problems 21

finding 17
realloc() problems 13
reference counting 15
removing filters 38
reset backtrace hierarchy

55
resizing columns 37
Restart Enable button 17
restarting your program 17
reusing memory 75
running out of memory 14

S
Save 51
Save Configuration Page 50

Apply Settings 51
Get Current Settings 50
Load 51
Log all allocations on

exit 50
Log Memory Debug In-

formation 50
Save 51

saving heap information 77
saving view information 37
saving views 41
sections

data 5, 8
header 5
machine code 5
symbol table 5

selecting the process set
35

Set allocation focus level
53, 56

setting events 45
setting the PC 13
sharing filters 39
Show byte counts as

megabytes (MB) or
kilobytes (KB) prefer-
ence 55, 56, 60

showing backtrace 74
showing backtraces 75
slave processes 73
sorting columns 38
Source View 52
Source view 56

Source/Backtrace page 59
space, dynamically allocat-

ing 12
stack frames 10

arranging 8
stack memory 11, 61
stack virtual memory 62
state information 74
–status option 73, 74
Stop execution when an al-

location or dealloca-
tion error 17

Stop execution when an
event or error occurs
check box 45

stopping when free prob-
lems occur 2

strdup allocating memory
13

symbol table section 5

T
–tag_alloc 80
tagging 79, 80

notify on dealloc 80, 81
notify on realloc 80, 81

text segment memory 61
Tools > Block Properties

command 23
Tools > Memory Debug-

ging command 5
Tools > Memory Event De-

tails command 18,
19, 47

Tools > Watchpoint com-
mand 26, 32

tracking deallocations 24
tracking memory problems

17
tracking realloc problems

21
trim, backtrace 75
TV_HEAP_ARGS environ-

ment variable 82
backtrace_depth 82
backtrace_trim 82
display_allocations_

on_exit 82
memalign_strict_

alignment_even_
multiple 82

output 82
verbosity 82

tvheap_mr.a
aix_install_tvheap_

mr.sh script 88
and aix_malloctype.o

89
creating using poe 88
dynamically loading 89

Z

Debugging Memory Problems Using TotalView: version 6.7 97

libc.a requirements 88
pathname require-

ments 88
relinking executables

on AIX 89
tvheap_mr.a library 88

U
underwritten destructors

15
using the Memory Debug-

ger 15

V
verbosity TV_HEAP_ARGS

value 82
–version option 74
View in Block Properties

Window button 47
views

output file 43
saving 41
saving backtraces 43
saving description in-

formation 44
saving enabled filters

43
saving information

within 37
saving process infor-

mation 43
saving source code in-

formation 43
saving view descrip-

tion 43
simplifying 77

virtual memory 62
virtual stack memory 62

W
watchpoints 27
wrong address, freeing 21

Z
zero allocation 79
zero allocation painting 79,

80

Z

98 Index

	Contents
	Debugging Memory Problems
	Checking for Problems
	Programs and Memory
	Behind the Scenes
	Your Program’s Data
	The Data Section
	The Stack
	The Heap
	Finding Allocation Problems
	Finding Deallocation Problems
	realloc() Problems
	Finding Memory Leaks

	Using the Memory Debugger
	Memory Debugger Overview
	Enabling, Stopping, and Starting

	Finding free() and realloc() Problems
	Event and Error Notification
	Types of Problems
	Freeing Unallocated Space
	Freeing Memory That Is Already Freed
	Tracking realloc() Problems
	Freeing the Wrong Address

	Block Properties and Event Notification

	Finding Memory Leaks
	Using Watch Points

	Fixing Dangling Pointer Problems
	Dangling Pointers
	Examining Memory
	Filtering

	Block Painting
	Hoarding
	Example 1: Finding a Multithreading Problem
	Example 2: Finding Dangling Pointer References

	Using the Memory Debugger Window
	About the Memory Debugger
	Common Operations
	Rows and Columns
	Filtering
	Saving Views

	Configuration Page
	Leak Detection Page
	Heap Status Page
	Memory Usage Page

	Using the dheap Command
	dheap Example
	dheap
	Notification When free Problems Occur
	Showing Backtrace Information: dheap -backtrace:
	Memory Reuse: dheap -hoard
	Writing Heap Information: dheap -export
	Filtering Heap Information: dheap -filter
	Checking for Dangling Pointers: dheap -is_dangling:
	Detecting Leaks: dheap -leaks
	Block Painting: dheap -paint
	Deallocation Notification: dheap -tag_alloc

	TV_HEAP_ARGS

	Creating Programs for Memory Debugging
	Linking Your Application With the Agent
	Attaching to Programs
	Using the Memory Debugger
	MPICH
	IBM PE
	SGI MPI
	RMS MPI

	Installing tvheap_mr.a on AIX
	LIBPATH and Linking
	Using the TVHEAP_ARGS Variable

	Index

